
APPENDIX P
PAIRING PROCEDURES GUIDELINES

This appendix is a technical aid to help clarify the pairing procedures. It in no way constitutes a set

of rules.

P.0 The highest scoregroup constitutes the first bracket.

P.1 Determine bracket variables

1.1 Be NP the number of players in the bracket

1.2 Determine M0 (number of MDPs) according to B.1.a

Set Res = NP - M0 (Res: number of residents)

Set CMP = min([NP/2], Res) (CMP: Candidate Max Pairs)

1.3 Set Fls = NP - 2 * CMP (Fls: number of floaters)

Set FFSList = empty (FFSList: list of forbidden set of floaters, useful when Fls > 0)

1.4 Set CM1 = min(M0, CMP) (CM1: Candidate M1)

Find active criteria and set their minima (except CLB) P.2

Note: minima are not set for the CLB. The reason is explained later (see 4.4.b.1.b).

2.1 C6

a C6 is active, if the bracket is heterogenous (i.e. M0 > 0)

b For details about the computation of minC6, see P.3.2

2.2 C8

a Be CD2W the number of topscorers (or possible opponents) with CD > +1

Be CD2B the number of topscorers (or possible opponents) with CD < -1

(CD is the colour difference of a player - see A.6)

b C.8 is active if in the bracket neither CD2W nor CD2B are equal to NP, and:

• there are at least a topscorer and another player all with CD>+1 (or)

• there are at least a topscorer and another player all with CD<-1

c minC8 is the number of topscorers (or possible opponents) whose |CD| cannot

be less than 2.

It is equal to max(0, max(CD2W, CD2B) - (NP - CMP))

2.3 C9

 a Be WW the number of topscorers (or possible opponents) who had White in the

last two played rounds

Be BB the number of topscorers (or possible opponents) who had Black in the

last two played rounds

b C9 is active if in the bracket neither WW nor BB are equal to NP, and:

• if BB>0, there are at least a topscorer and another player with an absolute

preference for White (or)

• if WW>0, there are at least a topscorer and another player with an absolute

preference for Black

c minC9 is the number of topscorers who cannot help but receive the same colour

for the third consecutive round.

It is equal to max(0, max(WW, BB) - (NP - CMP))

2.4 C10

a Be wS the number of players who expect White

Be bS the number of players who expect Black

b C10 is inactive when any of the following conditions applies:

• all players expect the same colour (NP=max(wS,bS))

• at most one player per colour has a colour preference (max(wS,bS) <=1)

• there are no floaters (Fls=0) and at most one player has a colour preference

different from all other players (min(NP-wS,NP-bS)<=1)
C10 may be inactive also in other conditions (e.g. if at least CMP+Fls players have the same absolute preference in

rounds before the last one)

c minC10 (which is also called X) is the number of players who cannot receive

the expected colour.

It is equal to max(0, CMP - (NP - wS - bS) - min(wS, bS))

2.5 C11

a Be WS the number of players who have a strong or absolute preference for

White

Be BS the number of players who have a strong or absolute preference for Black

b C11 is inactive when any of the following conditions applies:

• all players have the same strong preference (NP=max(WS,BS))

• at most one player per colour has a strong or absolute colour preference

(max(WS,BS) <=1)

• there are no floaters (Fls=0) and at most one player has a strong colour

preference different from all other players (min(NP-WS,NP-BS)<=1)

c minC11 (which is also called Z) is the number of players whose strong

preference cannot be fulfilled.

It is equal to max(0, CMP - (NP - WS - BS) - min(WS, BS))

2.6 C12

a Be D1 the number of residents who received a downfloat in the previous round

b If 0 < D1 < Res, C12 is active when pairing the CLB or when Fls > 0 (the

bracket produces downfloaters)

c In standard brackets, minC12 is the number of residents who cannot help but

receive the same downfloat as the last round.

It is equal to max(0, D1 - 2 * CMP + CM1)
Reason: CM1+2*(CMP-CM1) is the number of residents who play with MDPs and among themselves. If D1 is bigger than this number,

some of the D1 residents will be forced to get a downfloat.

2.7 C13

a Be U1 the number of residents who received an upfloat in the previous round

b If 0 < U1 < Res, C13 is active when pairing the CLB or when CM1>0 (i.e.

heterogeneous brackets, where not all MDP(s) are in the Limbo)

c minC13 is the number of residents who cannot help but receive the same upfloat

as the last round.

It is equal to max(0, U1 - Res + CM1)
Reason: Res-CM1 is the number of residents who are non forced to meet a MDP. If U1 is bigger than this number, some of the U1

residents will be forced to play with a MDP

2.8 C14

a Be D2 the number of residents who received a downfloat two rounds ago

b If 0 < D2 < Res, C14 is active when pairing the CLB or when Fls > 0

c minC14 is the number of residents who cannot avoid to receive the same

downfloat as two rounds ago.

It is equal to max(0, D2 - 2 * CMP + CM1)

2.9 C15

a Be U2 the number of residents who received an upfloat two rounds ago

b If 0 < U2 < Res, C13 is active when pairing the CLB or when CM1>0

c minC15 is the number of residents who cannot avoid to receive the same upfloat

as two rounds ago.

It is equal to max(0, U2 - Res + CM1)

2.10 C16

a Be R1 the number of players who received a downfloat in the previous round

and have a higher score than the lowest ranked player in the bracket

b If R1 > 0, C16 is active when pairing the CLB or when M0>CM1

c In a standard bracket, the check-value of C16 is a sorted list (like in PSD

computation, see A.7) of values given by the SD(s) of the Limbo elements who

received a downfloat in the previous round (for the other Limbo elements who

did not receive a downfloat in the previous round, the list value is 0).

In the CLB, as C16 considerations are made also in resident pairs (as the score

of the two players may be unequal), all pairs are considered (hence the list has a

length of CMP+Fls), and non-zero values are set for pairs where the

higher-ranked-player (the one from S1) has a higher score than his opponent and

received a downfloat in the previous round.

d minC16 is a list with a zero value for each element.
Note: having initially all zeroes is not particularly accurate (e.g. if M0=3, CM1=2 and two of the MDPs got a

downfloat in the previous round, there will be always a non-zero element in the list), but it would be quite

complicate to introduce more precise rules.

2.11 C17

 a C17 is active when U1 > 0 (see P.2.7.a) and the players of the bracket have at

least three different scores

b The check-value of C17 is a sorted list of values given by the SD(s) of the

games where the lower-ranked-player has a lower score than his opponent and

has received an upfloat in the previous round.

Such list contains M1 elements in standard brackets and CMP elements in the

CLB.

c minC17 is a list with a zero value for each element.

2.12 C18

a Be R2 the number of players who received a downfloat two rounds ago and

have a higher score than the lowest ranked player in the bracket

b If R2 > 0, C18 is active when pairing the CLB or when M0>CM1

c In a standard bracket, the check-value of C18 is a sorted list of values given by

the SD(s) of the Limbo elements who received a downfloat two rounds ago (for

the other Limbo elements who did not receive a downfloat two rounds ago, the

list value is 0).

In the CLB, as C18 considerations are made also in resident pairs (as the score

of the two players may be unequal), all pairs are considered (hence the list has a

length of CMP+Fls), and non-zero values are set for pairs where the

higher-ranked-player (the one from S1) has a higher score than his opponent and

received a downfloat two rounds ago.

d minC18 is a list with a zero value for each element.

2.13 C19

a C19 is active when U2 > 0 (see P.2.9.a) and the players have at least three

different scores

b The check-value of C19 is a sorted list of values given by the SD(s) of the

games where the lower-ranked-player has a lower score than his opponent and

has received an upfloat two rounds ago.

Such list contains M1 elements in standard brackets and CMP elements in the

CLB.

c minC19 is a list with a zero value for each element.

P.3 First pairing generation

 3.0 If the bracket is the CLB then set target=best, otherwise set target=perfect
target represents the kind of search that is performed: perfect means look for the perfect pairing; best means look for the best

pairing (track the current best, called champ)

Set legal = false
legal becomes true as soon as the bracket produces its first legal pairing

3.1 Generate the first candidate pairing (simply called candidate) for the bracket (see

Section B).

3.2 If the bracket is not the CLB and C.6 is active, set minC6 equal to the PSD of the

first candidate.

P.4 Pairing search

 4.0 The first pair that creates "trouble" in a bracket is called pair-of-failure (POF).

If the "trouble" depends on a downfloater, the POF is the last pair (i.e. the CMP-th

pair).

The initial set is POF = CMP.

4.1 If there is a champ (this is only possible if target is best)

 a if PSD(candidate) > PSD(champ), the candidate is discarded and goto P.4.7 for a

new candidate; otherwise set online=false
online represents a state of the candidate: when false, it means that the current failure values of the candidate (which

may be worsening during the procedure) say that the candidate is (currently) better than the champ. When online is true,

the candidate has at least the same failure values as the champ - as soon as a failure-value of the candidate becomes

worse than the corresponding failure value of the champ, the candidate is discarded.

4.2 Floater verification (if Fls > 0):

a if the bracket is the PPB, verify floaters against the SCS (call

CompletionCheck(floaters, SCS)).

If the verification fails, the candidate is discarded and goto P.4.7 for a new

candidate; otherwise goto P.4.3

b if the bracket is not the CLB, check whether the current set of floaters is

included in the FFSList. If so, the candidate is discarded and goto P.4.7 for a

new candidate.

4.3 If target is perfect and PSD(candidate) = minC6, set probable=true; otherwise set

probable=false
As long as probable is true, the candidate can be a perfect pairing.

4.4 For each pair P of the candidate (numbered from 1 to CMP) and for each floater (P

doesn't change while scrutinizing floaters, i.e. it is equal to CMP):

a if the pair fails any absolute criterion, the candidate is discarded. If target is

perfect and there is a champ, set POF=min(P, POF); otherwise set POF=P. Then

goto P.4.7 for a new candidate
POF=min(P,POF) eliminates all the candidates that have a failure in a pair that precedes the one with an absolute

failure; such elimination can be applied when looking for a perfect pairing as long as a champ has already been set.

b for each criterion (C8-C11,C13,C15,C17,C19 for pairs; C12,C14,C16,C18 for

floaters), provided that is active (be Ci such criterion)

1 If the pair or the floater fails Ci:

a increment failure counter Fi for criterion Ci

b if probable is true and Fi > minCi, set probable = false
Note: this is the only place where minima are used; hence, minima are used only when probable is true. As

in the CLB probable is always false (see P4.0 and P4.3), minima are never used in the CLB.

c if target is perfect, set POF = min(P, POF)

 d if there is a champ, set online to true if, for each criterion Cj that

precedes Ci (including C6), the candidate-Fj is equal to the champ-Fj.

Otherwise, set online to false.

2 If there is a champ and online is true:

 a if the candidate-Fi is higher than the champ-Fi, the candidate is

discarded, set POF = min(P, POF), and goto P.4.7 for a new candidate

b if the candidate-Fi is less than champ-Fi, set online = false
Note: if candidate-Fi is equal to champ-Fi and there is a candidate-Fk higher than a champ-Fk , with

Ck following Ci , the candidate will be discarded when analyzing Ck (i.e. later in the process).

4.5 Set legal = true (a legal pairing was found)

a If probable is true (assert: target = perfect), the candidate is the Probable

Pairing. Go to 4.8 for the relevant checks

b If online is false, the candidate becomes the new champ

4.6

c If online is true (which means that candidate and champ have exactly the same

Fi failure values): the candidate is discarded (as it is being generated later than

the champ)

4.7 Generation of a new pairing (a new candidate) using POF (call

GetNextPairing(candidate, POF)):

a if it was possible to generate a new pairing, restart from P.4

b (assert: a new pairing was not generated, and, obviously no perfect pairing was

found)

if legal is true:

1 if target is perfect, set target=best and restart from P.3.1

2 if a champ exists, such champ is named the Probable Pairing: goto P.4.8

for the relevant checks

3 (no champ exists, but legal being true means that FFSList is not empty)

bestP (see P.4.8.b.3) is the Definitive Pairing. Goto P.5 for the completion

check

 c (assert: legal is false => no pairing whatsoever was generated)

if M0 > 0 and M0-CM1 < Fls, set CM1 = CM1 - 1 and restart from P.2.

(assert: CMP > 0; with CMP=0, i.e. all float, legal cannot become false)

Otherwise, set CMP = CMP - 1 and restart from P.1.3.

If there are floaters in the Probable Pairing, check whether such set of floaters

(called FS) maximizes the next bracket (call FloatersVerification(FS)); if there are

no floaters or the above check succeeded, the Probable Pairing is the Definitive

Pairing and goto P.5 for the completion check.

Otherwise (i.e., the FloatersVerification failed):

a if target is perfect (i.e. the Probable Pairing is a candidate), the candidate is

discarded and goto P.4.7 for a new candidate

b (assert: target is best, i.e. the Probable Pairing is a champ)

1 a pairing of the following bracket is returned as the result of the failed

check. Be fbPairs the number of pairs of such pairing, and fbPSD its PSD.

2 add FS to the FFSList

4.8

3 if bestP, and consequently nextPairs and nextPSD, do not exist, or, if they

exist and either fbPairs > nextPairs or fbPairs = nextPairs and fbPSD <

nextPSD, set nextPairs to fbPairs, nextPSD to fbPSD and bestP to the

Probable Pairing.

4 reset the champ (i.e. from now on, a champ is no more existent), and restart

from P.3.1

P.5 Completion Check

5.1 Unless the current bracket is the PPB:

a with the floaters defined by the (perfect) pairing found in P.4.5 or by the

(imperfect) pairing found in P.4.7.2.a (which may be none), and all the players

coming from the successive scoregroups (rest), call CompletionCheck(floaters,

rest) to verify whether it is possible to find a legal pairing in the combined

bracket made of the floaters and the rest.

b If the completion-check is successful, the pairing is definitively approved.

Continue with P.5.2.

c If the completion-check fails, the current bracket is called PPB and the rest is

called SCS.

The pairing process restarts from P.3.

5.2 If there is a successive scoregroup (which is the SCS if the current bracket is the

PPB), the pairing process continues with the bracket composed of the floaters of the

current pairing and the successive scoregroup. With this new bracket, restart from

P.1.

5.3 If there are no more scoregroups, the pairing process ends

 init variables

1.1 NP number of players

1.2 M0 according to B.1.a

Res = NP - M0

CMP = min((NP/2), Res)

1.3 Fls=NP-2*CMP

FFSList <-- empty

1.4 CM1=min(M0, CMP)

1. START BRACKET PAIRING

is a CLB?

target=best
target=perfect

SET MINIMA

legal=False

generate first candidate

YN

is a CLB?

minC6=PSD

Y

N

C6 active?

Y

N

PSD(cand)>

PSD(champ)

N

online=False

Fls > 0?

Y

N

is PPB?

Y

N

FAIL OK

is CLB?

N

floaters are

in FFSList?

Y

N

TO 4.7

TO 4.3

4.1 CHAMP CHECK

4.2 FLOATER VERIFICATION

3.1 FIRST CANDIDATE

See note to 4.1.a

CHAMP exists?

Y

Y

N

Y

No floaters, there is

nothing to check!

2. SET ACTIVE CRITERIA

Check Floaters against SCS

CALL CompletionCheck()

SUCCESS?

POF=CMP

discard candidate

discard candidate

discard candidate

target=perfect AND

minC6=PSD?

isProbable=FalseisProbable=True

Y N

FOR pair = 1..P

FOR each floater

abs criteria failures?

Y

N

TO 4.7

TO 4.7

FOR each active

criterion Ci in

C8..C19

increment failure

counter Fi

Ci failure?
Y N

isProbable=True

AND Fi>minCi? isProbable=False

N

Y

POF=min(P,POF)

4.3 SET isProbable

4.4 CHECK CRITERIA

CHAMP exists AND

online=True?

NY

cand-Fi>CHAMP-Fi

Y

N

Y

N

online=False

next criterion

next pair or floater

TO 4.5

target=perfect

POF=min(P,POF) POF=P

Y N

Note: isProbable is a flag that, if

true, means that the candidate

could be a perfect pairing

target=perfect?
Y

N

POF=min(P,POF)

CHAMP exists

AND for each previous

criterion Cj,

cand-Fj==CHAMP-Fj

Y N

online=True online=False

cand-Fi<CHAMP-Fi

See note to 4.4.2.b

discard candidate

discard candidate

TO 4.5

TO 4.7

isProbable=True?

target=best

promote candidate

to PROBABLE

Y

N

4.6 CHECK CHAMP

TO 4.8

online=True?

N

Y

make candidate the new

CHAMP

4.7 MAKE NEW PAIRING

New Pairing Generation

CALL GetNextPairing()

SUCCESS?

TO 4.1

N

Y

legal=True?

YN

target=perfect?

TO 3.1

Y

N

CHAMP exists?promote CHAMP to

PROBABLE

Y

N

accept bestP as

pairing (see 4.8b.3)

TO P.5

M0>0 AND

M0-CM1<Fls

Y N

decrement CMP

TO P1.3

decrement CM1

TO P.2

here, CMP>0 by necessity,

because every pairing with

CMP=0 would be a legal one,

while here legal is false.

As we have no CHAMP here, it must

have been reset. As this happens only

in sub 4.8, we are certain that that sub

has been executed and hence a bestP

is already defined.

PROBABLE here is the probable

pairing (viz. a candidate which may

well become the actual pairing of

the bracket).

4.5 LEGAL PAIRING

legal=True

discard candidate

(it is not better than CHAMP)

TO 4.5

TO P.5 4.8 FLOATERS CHECK

SUCCESS?

Y

accept PROBABLE

get fbPairs and fbPSD

from next bracket

add Floaters Set to

FFSList (forbidden list)

is bestP?

(see 4.8.b.3)

nextPairs=fbPairs

nextPSD=fbPSD

bestP=PROBABLE

N

Y

delete CHAMP

TO P.3.1

5 COMPLETION CHECK

is PPB?

Y

N

compose the

'rest'

SUCCESS?

OK

FAIL

ACCEPT PAIRING PPB<=current bracket

SCS<=rest

TO P.3

a next scoregroup

exists?

build next bracket

Y

N

TO P.1
END

Fls > 0?

Y

N
accept PROBABLE

Check the floaters

CALL FloatersVerification()

C.7 TEST: This step looks for whether a maximum pairing of

the next bracket, with the given floaters exists. If so, the

check is successful (i.e PROBABLE complies with C.7). If not,

the return value is the first legal pairing of the next bracket,

from which to compute fbPairs (the number of pairs) and

fbPSD (the PSD in the next bracket).

Check Legal Pairing

CALL CompletionCheck()

The 'rest' contains all the

players yet to be paired

from the next bracket on

target=perfect?

TO 4.7

Y

N

discard candidate

N

Subroutine FloatersVerification(curDF, nextGroup)
The goal of this routine is to verify whether the set of downfloaters from the current bracket (represented by curDF) maximizes the

number of pairs and minimizes the PSD of the following bracket (composed of such downfloaters and by the players in nextGroup).

curDF A list of BSN(s) representing the players that should downfloat from the current bracket.

nextGroup A list of BSN(s), representing the players who are to be combined with the players identified by

curDF in order to produce the next pairing bracket.

Return Either NULL (which means that the verification has been successful)

or a legal pairing of the next pairing bracket, which permits to retrieve

its number of pairs and its PSD.

Overview
The procedure described below is the most easy-to-explain way to see whether this routine reaches its goal (it may

be optimized, though).

It basically is a simplified version of the general pairing algorithm. When the statement P.4.5 is reached (which

means that a legal pairing has been found - something that, sooner or later, is going to happen, at worst, with a

pairing made of all downfloaters), the key is whether the flow of the process went through P.4.7.c (where either the

number of pairable MDP(s) or the number of possible pairs are reduced - both events causing a failure of the goal)

or P.4.7.a (in case the newly generated pairing has a PSD higher than minC6).

If any of the above events happens, the legal pairing found in P.4.5 is not maximum, and the current candidate is

returned, as such candidate represents the best (in terms of pairs and PSD) that the curDF downfloaters can

provide.

V.1 Prepare a bracket, combining the curDF downfloaters with the nextGroup players

V.2 Set maximum = True

V.3 Be NP the number of players in the bracket

Determine M0 = #CurDF (number of downfloaters)

Set Res = NP - M0 (Res: number of residents)

Set CMP = min([NP/2], Res) (CMP: Candidate Max Pairs)

V.4 Set Fls = NP - 2 * CMP (Fls: number of floaters)

Set CM1 = min(M0, CMP) (CM1: Candidate M1)

V.5 Generate the first candidate pairing (simply called candidate) for the bracket (see section B).

V.6 If maximum is True, set minC6 equal to the PSD of candidate.

V.7 For each pair P of the candidate (numbered from 1 to CMP):

 7.1 If the pair fails any absolute criterion, candidate is discarded.

Set POF=P. Then goto V.9 for a new candidate

V.8 If maximum is True, return NULL; else return candidate

V.9 Set candidate = GetNextPairing(candidate, POF)

9.1 If candidate is not NULL:

a If maximum is True and PSD(candidate) > minC6: set maximum = False

b Restart from V.7

9.2 (assert: candidate is NULL - no more available pairings)

Set maximum = False

9.3 If M0 > 0 and M0 - CM1 < Fls (i.e. a MDP may float)

a Set CM1 = CM1 - 1

b Restart from V.7

9.4 Set CMP = CMP - 1

9.5 Restart from V.4

Subroutine CompletionCheck(DFs, Rest)

DFs A list (possibly empty) of players that should downfloat from the current bracket.

Rest A list of all the players coming from all the scoregroups that follow the current bracket (in other words:

all the players that are yet to be paired)

Return True, if the completion check is passed - False otherwise

Overview
This routine verifies whether the combined set of players coming from both DFs (if any) and Rest can produce a legal pairing.

If the total number of players is odd, add a (fictitious) player called Virtual Bye.

The basic process consists in pairing two compatible players and see whether the remaining players can be paired among

themselves. If they do, the verification is successful. If they don't, try with two other compatible players, until all possible

combinations of compatible players have been exhausted (take into account that each player, who neither got a PAB nor won

a scheduled game by forfeit, is a compatible opponent of the Virtual Bye).

A description of the main variables used by the routine:

Verification is a container of lists of players to be paired; it is a dynamic container, in the sense that the

number of elements it contains may vary and, in different moments, different lists may occupy the

same slot

IndexVerification it is the istant counter of the number of lists contained in Verification

WorkingList represents a list of players to be paired

O.0 Build Main, the combined list of players coming from DFs and Rest

O.1 Add Main to the Verification container
Set Verification[1] <= Main

indexVerification = 1

O.2 Extract from Verification the latest list it contains and put it in WorkingList
Set WorkingList <= Verification[indexVerification]

indexVerification = indexVerification - 1

O.3 Take any player from WorkingList, for instance the first one

Set player = WorkingList[1]

O.4 Build OL, the list of players in the WorkingList who may face player in the current round

O.5 If OL is empty:
It means that the players in the WorkingList cannot be paired among themselves, as there is at least one player (e.g. player)

that doesn't have an opponent. Try with another list, if one exists (i.e. when the Verification container is not empty),

otherwise it means that no list can produce a pairing (which is a failure)

5.1 If indexVerification = 0 (i.e. the Verification container is empty), return False

5.2 Goto O.2 (since at least one list still exists)

O.6 For each possible opponent of player create a new list without the player and his possible opponent (in other words, it

simulates the two players have been paired)

For each element (be opponent) of OL:

8.1 Exclude from WorkingList player and opponent

Set newList <= WorkingList - player - opponent

8.2 If newList is empty (i.e. two at a time, all players have been paired), return True (the

verification was successful)

8.3 Add the new list to the Verification container

indexVerification = indexVerification + 1

Verification[indexVerification] = newList

O.7 Goto O.2 (i.e. continue with the latest inserted list which, by construction, has two less

players than WorkingList)

Pairing Generation
The Pairing Generation is a collection of subroutines working together for the goal of producing a

new candidate pairing or to inform the main process that it is not possible to generate new pairings

for the bracket.

Invoking the Pairing Generation (with two parameters: the current candidate and the

pair-of-failure - POF, from now on) basically means invoking the driver of the aforementioned

subroutines, the function GetNextPairing, which returns either a new pairing or NULL, if it is

impossible to generate a new pairing.

To process the GetNextPairing, a few other subroutines may be called to manage specific tasks:

Next to get the next meaningful transposition

Exchange to perform an exchange in a homogeneous pairing (called by Next, when

no meaningful transpositions is avaialable for a given POF)

GenerateSequence to create a sequence of possible exchanges

BuildLimboList to create a list of all possible Limbos

The variables M0, NP, CMP and CM1 are used in the Pairing Generation subroutines. They are

inherited from the main process, although NP, CMP and CM1 may also be computed from the input

candidate pairing (in other words, only M0 is in an independent information).

A pairing is made of an ordered list of pairs and a set (i.e. unordered) of floaters.

From any pairing, it is always possible to retrieve two ordered lists of BSN(s). The first list (L1)

contains the higher BSN of each pair (ordered following the order of the pairs). The second list (L2)

contains the lower BSN of each pair (in the same order) followed by the floaters sorted by BSN. In

any FIDE (Dutch) pairing, L1 contains CMP BSNs and L2 contains NP-CMP BSNs.

Note: It works also the other way: from two ordered list of BSN(s), the first one containing B1Size BSN(s), the second one

containing B2Size BSN(s), with B2Size ≥ B1Size, it is possible to build a pairing made of B1Size pairs (the first element

of B1 against the first element of B2; the second element of B1 against the second element of B2; and so on) and

B2Size-B1Size floaters.

 Such a resulting pairing is represented with the following symbolism: B1 <=> B2.

The goal of the Pairing Generation subroutines is to build a new pairing to be analyzed by the main

algorithm. In order not to waste time in preparing useless pairings, the following criterion

(COGUP) must be fully respected.

Criterion for Optimizing the Generation of Useful Pairings (COGUP)

A pairing is useful if, in each of its pairs, the element coming from L1 has a lower BSN than that of the

element coming from L2.

For any pairing that contains a pair in which the L1-element has a BSN higher than that of the L2-element (i.e.

a useless pairing), there is a correspondent useful pairing.

Any useful pairing is always generated before any of its correspondent useless pairings, because it has a lower

number of exchanges.

Subroutine GetNextPairing(currentPairing, POF)

currentPairing the last candidate that was analyzed by the main algorithm

POF (pair-of-failure) represents a pair of the candidate (hence it ranges from 1 to CMP) after the analysis

found that its first POF pairs cannot produce a perfect pairing (they may have produced the best pairing,

but this cannot be determined until all the meaningful pairings have been evaluated). Consequently, in the

new pairing, at least one of the first POF pairs must be different from the first POF pairs of the candidate.

Note that when a problem happens in the analysis of the floaters, the value of POF is CMP (changing the

last pair of the pairing, will also change the floaters).

Return Either a new meaningful pairing (i.e. it complies with COGUP) or NULL, if it

is impossible to generate a new pairing.

Overview
The function behaves in different ways depending on whether it is applied on a homogeneous bracket, a quasi-homogeneous

bracket (there are MDP(s), but they are not paired), a remainder of a heterogenenous bracket or the MDP-pairing, with or

without a Limbo.

G.1 If M0 = 0 (i.e. the bracket is homogeneous) or CM1 = 0 (the bracket is quasi-homogeneous,

i.e. all MDP(s) are in the Limbo, hence they are bound to float):

a. Define:

L1: list of the higher BSN(s) of each pair of currentPairing (in number of CMP)

L2: list of the lower BSN(s) of the same pairs as above taken in that order,

followed by each resident floater (taken in order of BSN) (i.e. possible Limbo

players -unpaired MDP(s)- are excluded from L2)

b. Set returnPairing = Next(L1, L2, POF)

c. If returnPairing is NULL, return NULL

d. If M0 ≠ 0 (i.e. there are Limbo players), add the unpaired MDP(s) to the list of

returnPairing floaters and then sort all floaters by BSN

e. Return returnPairing

G.2 (assert: M0 ≠ 0 and CM1 ≠ 0 => the bracket is truly heterogeneous; if M0 > CM1, there

are Limbo players)

Define:

Q1: list of the higher BSN(s) of the first CM1 pairs of currentPairing (paired MDP(s) -

they are in BSN order)

Q2: list of the lower BSN(s) of the first CM1 pairs of currentPairing, taken in that order

(upfloaters)

Q3: list of the higher BSN(s) of the last CMP - CM1 pairs of currentPairing, taken in

that order

Q4: list of the lower BSN(s) of the same pairs as above taken in that order, followed by

each resident floater (taken in order of BSN)

The players in Q1 are the paired MDP(s); the players in Q2 are their opponents

(upfloaters); hence Q1<=>Q2 is the MDP-Pairing.

The players in Q3 and Q4 form the remainder; possible Limbo players (existent when M0 >

CM1) are not included in any set.

G.3 if POF > CM1 (the failure is in the remainder)

a. Set tempPairing = Next(Q3, Q4, POF - CM1)

b. If tempPairing = NULL, put POF = CM1 and goto G.4

c. Set returnPairing = Q1<=>Q2 (which will net the same MDP-pairing as before)

d. Attach tempPairing (including the floaters) to returnPairing

e. If M0 > CM1 (i.e. there are Limbo players), add the unpaired MDP(s) to the list of

returnPairing floaters and then sort all floaters by BSN

f. Return returnPairing

G.4 (assert: POF <= CM1 => the failure is in the MDP-Pairing)

Set tempPairing = Next(Q1, Q2::Q3::Q4, POF)

G.5 If tempPairing is NULL:

a. If M0 = CM1 (i.e. there is no Limbo), return NULL (i.e. no more pairing exists for

Q1)

b. (assert: there is a Limbo)

If LimboList is NULL:

1. Set LimboList = buildLimboList()
By construction LimboList[1] is the current Q1, i.e. the one made by the first CM1 elements

2. LimboListSize = <number of elements of LimboList>

3. LLIndex = 1

c. If LLIndex = LimboListSize, return NULL (all possible Limbos have been exhausted)

d. LLIIndex = LLIndex + 1

e. Set NQ1 = LimboList[LLIndex] (a new set of pairable MDP(s))

f. Sort the Q2::Q3::Q4 players in BSN order (be QS such sorted list).

g. Set returnPairing = NQ1 <=> [the first CM1 elements of QS]

h. Set tempPairing = [elements of QS from the (CM1+1)
th

 to the (CM1+CMP)
th

] <=>

[elements of QS from the (CM1+CMP+1)
th

 to the (CM1+2*CMP)
th

]

i. Attach tempPairing to returnPairing

j. Add to returnPairing as floaters:

• the MDP(s) that are not in NQ1 (and)

• the last (NP - CM1 - 2 *CMP) elements of QS

k. Return returnPairing

G.6 (assert: tempPairing is not null; consider also that tempPairing is made of CM1 pairs and

NP - 2 * CM1 floaters, where M0 - CM1 of them are unpaired MDP(s).

Create returnPairing, initialized with the pairs of tempPairing (i.e. no floaters)

G.7 Set addPairing = [the first CMP-CM1 floaters of tempPairing (taken in BSN order)] <=>

[the next CMP-CM1 floaters of tempPairing (taken in BSN order)]

The remaining NP - 2 * CMP floaters of tempPairing are the floaters of addPairing.

G.8 If M0 > CM1 (i.e. there are Limbo players), add the unpaired MDP(s) to the list of

addPairing floaters and then sort all floaters by BSN

G.9 Attach addPairing to returnPairing

G.10 Return returnPairing

Subroutine BuildLimboList()
This function is called only when a Limbo exists, i.e. when CM1 < M0. It may be called at most M0-1 times for each bracket, i.e. any

time that CM1 is reduced and, with the initial Limbo (the one made of the last M0-CM1 MDP(s)), a perfect pairing could not be

identified.

Note that unless it is the CLB (where all Limbos are always considered - but M0-CM1 is at most 1, so at most M0 different Limbos

are possible), as soon as a legal pairing is found (in P4.5), CM1 is crystallized - and the same holds for the minimum PSD.

The unpaired MDPs (of the first legal pairing) define the structure of the Limbo. Any valid Limbo (from the one of the first legal

pairing to the last one, the one made of the first M0-CM1 BSN(s)) must have the same number of elements (obviously) and the

corresponding players must have the same scores of the players of the first valid Limbo.

Return A list of all possible Limbos (actually what is returned is the list of the elements that

are not in the Limbo).

Note that the first element of the returned list contains the first CM1 BSN(s) of the

bracket, which correspond to the paired MDP(s) belonging to the candidate that has

been the last evaluated one in the main process.

Overview
The number of possible Limbos is given by the number of combinations of M0 elements, taken

CM1 at a time, which is:

M0!

(M0-CM1)! * CM1!

Such Limbos are sorted following first the score difference (SD) of the MDP(s) in the Limbo (SD(s) are sorted from the highest to

the lowest, then the lists are taken in lexicographic order), and then the lexicographic order of the BSN of the MDP(s) that are not

part of the Limbo (i.e. the MDP(s) that are going to be paired)

L.1 Set tempLimboList <= empty

L.2 For each possible set L of M0-CM1 BSN(s) not higher than M0:
Example: if M0 is 5 and CM1 is 3, the possible sets are (4,5) (3,5) (3,4) (2,5) (2,4) (2,3) (1,5) (1,4) (1,3) (1,2). The

number of different sets is 5!/(2!*3!) = 120/(2*6) = 10.

2.1 Compute S0, a list of BSN(s) not higher than M0 and not in L, sorted from the

lowest to the highest

2.2 For each player whose BSN is in L, compute the score; collect such scores in

Weight, and sort them from the highest score to the lowest

2.3 Add the t-uple <L, Weight, S0> to the tempLimboList

L.3 Sort the t-uples in tempLimboList by Weight, from the lowest to the highest (Weight(s) are

compared in lexicographic order). For equal Weight(s), sort the t-uples in order of S0 from

the lowest to the highest (also S0(s) are compared in lexicographic order)

L.4 Once the sorting of the t-uples has been completed, gather the various S0 elements (in that

order), and put them in the list limboList.

L.5 Return limboList

Subroutine Next(L1, L2, POF)

L1 A list of BSN(s) (in number of L1Size); by construction, all the BSN(s) are either higher than M0 (homogeneous

entity) or not higher than M0 (heterogeneous entity)

L2 A second list of BSN(s), in number of L2Size, with L2Size ≥ L1Size

POF A number not lower than 1 and not higher than L1Size; in the L1<=>L2 pairing, it represents the pair that should

be changed (actually, at least one of the first POF pairs is to be changed)

Return Either a new meaningful pairing (i.e. it complies with the COGUP), made of elements

coming from L1 and L2, or NULL, if it is impossible to generate a new pairing.

Overview
When this function is called for the first time, L1<=>L2 is a candidate pairing or a part of a candidate (MDP-pairing or

remainder). However, during the processing, the function may be recursively called many times and the initial condition does not

hold anymore.

Its immediate goal is to find a transposition of L2, be NL2, which follows L2 (from the POFth pair on). L1 will not change. If no

more transpositions are available, apply an exchange (if the entity is homogeneous), by calling Exchange, which will define, if

possible, a NL1 different from L1 (and a consequent NL2); or return NULL.

When a new pairing is defined (either because a transposition was found or directly after an exchange), it is subject to the

COGUP. If the COGUP is positive, the new pairing is returned, otherwise the Next function is recursively called with new input

parameters.

N.1 The first POF-1 BSN(s) of NL2 (possibly none) are the first POF-1 BSN(s) of L2

N.2 The POF
th

 BSN of L2 is called the pivot

N.3 Collect the BSN(s) of L2, from the pivot to the last one, in a set called R2
Hence, by construction, R2 contains L2Size-POF elements - take notice that R2 includes the pivot

N.4 Take the lowest BSN of R2, higher than the pivot (be B2). If there is none (i.e. no useful

transpositions are available from the current pivot), goto N.5.

4.1 B2 is the POF
th

 BSN of NL2 (this complies with the COGUP)

4.2 Sort the other BSN(s) of R2 from the lowest to the highest. They constitute, in that

order, the next L2Size-POF-1 BSN(s) of NL2.

4.3 Set returnPairing = L1 <=> NL2

4.4 Goto N.7

N.5 If POF > 1

5.1 Set returnPairing = Next(L1, L2, POF - 1) (continue recursively the search of a useful

transposition from the element before the current pivot)

5.2 Goto N.7

N.6 (assert: POF = 1)

6.1 If all BSN(s) of L1 are not higher than M0, return NULL (in L1 there are only

MDP(s), which, by definition, cannot be exchanged)

6.2 set returnPairing = Exchange(L1, L2) (the POF is the first pair of the candidate,

which means that all transpositions have been used up - hence, look for an useful

exchange)

 6.3 if returnPairing = NULL (i.e. no more available exchanges), return NULL

N.7 Check the COGUP for returnPairing (which has its own RL1 and RL2 lists)

 7.1 If the COGUP fails at the F
th

 pair, return Next(RL1, RL2, F)

 7.2 If the COGUP is OK, return returnPairing

Example of use of Next
Be L1=[1,2,4,5,6] and L2=[8,3,9,12,11,(7 10)].

Two situations, with POF=5 (failure on 6-11 or on the floaters) and with POF=2 (failure on 2-3)

POF is 5 POF is 2

L2=[8,3,9,12,11,(7 10)]

NL2=[8, 3, 9, 12

pivot = 11

R2 = {7, 10, 11}

B2 does not exist

call Next(L1, L2, 4)
NL2=[8,3,9

pivot = 12

R2 = {7, 10, 11, 12}

B2 does not exist

call Next(L1, L2, 3)

NL2=[8,3

pivot=9

R2={7, 9, 10, 11, 12}

B2=10

NL2=[8,3,10,7,9,(11,12)]

L1=[1,2,4,5,6]

COGUP [5,6] vs [7,9] OK =>

return 1-8 2-3 4-10 5-7 6-9 F={11,12}

L2=[8,3,9,12,11,(7 10)]

NL2=[8

pivot=3

R2={3, 7, 9, 10, 11, 12}

B2=7

NL2=[8,7,3,9,10 (11,12)]
L1=[1,2,4,5,6]

COGUP: [4,5,6] vs [3,9,10] failure at 3 (third pair)

call Next(L1, NL2, 3)

NL2=[8,7

pivot=3

R2={3, 9, 10, 11, 12}

B2=9

NL2=[8,7, 9,3,10 (11,12)]

COGUP: [5,6] vs [3,10] failure at 3 (fourth pair)

call Next(L1, NL2, 4)

NL3=[8,7,9

pivot=3

R2={3, 10, 11, 12}

B2=10

NL3=[8,7, 9, 10,3 (11,12)]

COGUP: [6] vs [3] failure at 3 (fifth pair)

call Next(L1, NL3, 4)
NL4=[8,7,9,10

pivot=3

R2={3, 11, 12}

B2=11

NL4=[8,7, 9, 10,11 (3,12)]

COGUP: not needed

return 1-8 2-7 4-9 5-10 6-11 F={3,12}

Subroutine Exchange (L1, L2)
L1Size => number of elements in L1; L2Size => number of elements in L2;

LN => total number of elements (for the exchange), equal to L1Size + L2Size

FSN =>number of floaters, equal to L2Size - L1Size

Premise: this routine works with numbers that go from 1 to LN. If there are holes in the union of L1 and L2 (L1::L2) -something that

happens in remainders-, map the L1/L2 BSNs in a list of numbers from 1 to LN before proceding.

Example: if L1 contains [2 4 6] and L2 [8 5 9 7], the mapping is 2=>1, 4=>2, 5=>3, 6=>4, 7=>5, 8=>6, 9=>7; the

remapped-L1 is [1 2 4] and the remapped-L2 is [6 3 7 5]

At the end of the procedure, before returning the pairing, remap the numbers used in the process to the original BSNs.

L1 A list of L1Size BSN(s)

L2 A list of L2Size BSN(s)

L1 and L2 have no common elements.

Return NULL, if no more exchanges are possible. Otherwise, return a pairing that, if

expressed in the form NL1 <=> NL2, has NL1 different from L1.

Overview
Be OS1 the original S1, i.e. the (possibly remapped) BSN(s) from 1 to L1Size.

Be OS2 the original S2, i.e. the (possibly remapped) BSN(s) from L1Size+1 to LN.

Although it is possible to move from an exchange to the next one, trying to build a routine that does just that is not worth the

while. It is a lot simpler to prepare a full list of the needed exchanges at the beginning (see below, though, for the extended

meaning of "beginning") and then, each time that the procedure is invoked, take the next element from this list.

Hence, the first time the procedure is invoked, GenerateSequence(1) is called to generate the sequence of exchanges of one BSN.

It returns GS1, a sequence of G1 elements, each one of them composed of a t-uple of two BSNs, the first one is a BSN from OS1,

the last one is a BSN from OS2 (the one-by-one BSNs to be exchanged). The G-counter, an index varying from 1 to G1, is set to 1,

and the first invocation returns GS1[G].

Each subsequent invocation of Exchange, as long as the G-counter is less than G1, increments the G-counter of one and returns

GS1[G]. When G=G1, GenerateSequence(2) is called to generate the sequence of exchanges of two BSNs. It returns GS2, a

sequence of G2 elements, each one of them composed of a t-uple of four elements, the first two being BSNs from OS1, and the last

two being BSNs from OS2 (the two-by-two BSNs to be exchanged). The G-counter, an index varying from 1 to G2, is set to 1, and

GS2[G] is returned after the first invocation.

An so on.

COGUP considerations say that the maximum number of exchanges, Emax, is given by L2Size/2 rounded downwards (whereas,

with a higher number of exchanges, the COGUP will unavoidably fail).

As a consequence, GenerateSequence(Emax) is the last sequence that will be built. After exhausting all elements of the above

sequence, the procedure must return a failure (NULL), meaning that no more exchanges are possible.

Note: the G-counter (i.e. G), is a global variable, automatically initialized to 0.

X.0 Mapping phase (needed when maximum(L1::L2) > LN)

X.1 If G ≠ 0 and G < GE, then G = G+1 and goto X.3

X.2 (assert: G = 0 or G = GE)

2.1 Compute E, the number of elements of L1 with a higher BSN than L1Size (those are

elements of OS2, hence E represents the number of exchanges in the input pairing)

2.2 if E = Emax return NULL (no more exchanges are possible)

2.3 (assert E < Emax)

Set E=E+1, GSE=GenerateSequence(E), G=1, GE=#GSE (number of GSE elements)

X.3 Be set1 the first E elements of GSE[G]

Be set2 the last E elements of GSE[G]

Set NL1 <= OS1 - set1 + set2

Set NL2 <= OS2 - set2 + set1

X.4 Order the elements of both NL1 and NL2 according to C.04.3.A.2

X.5 If a mapping was applied in X.0, map back the real BSN(s) in NL1 and NL2

X.6 Return NL1 <=> NL2

Subroutine GenerateSequence (E)
This routine uses variables that were defined or computed inside the function Exchange: LN, FSN, Emax, OS1, OS2.

E A number between 1 and Emax

Return A sequence of t-uples, each of them containing 2*E BSNs, representing the BSNs (the

first E from OS1, the last E from OS2) that have to be exchanged.

Overview
The routine is first executed to build the sequence of all the possible exchanges of one element. Then it is executed again when this

sequence has been used up (by Exchange), to build the new sequence of all the possible exchanges of two elements - and so on

until the sequence of exchanges of Emax elements.

Q.1 Initialization phase

1.1 Sort all possible subsets of E BSN(s) of OS1 in decreasing lexicographic order to an

array S1LIST, which may have S1NLIST elements.
COGUP considerations show that some subsets must be excluded because they are useless, particularly the ones

which involve: all the first FSN+1 BSNs; FSN+2 of the first FSN+3 BSNs; FSN+3 of the first FSN+5 BSNs;

FSN+4 of the first FSN+7 elements; and so on.

For instance, if the bracket has to produce a floater (FSN=1), and E=2, the subset with the first two BSNs of

OS1 (i.e. 1 and 2) is to be excluded from S1LIST, because, if 1-2 were both moved to S2, one of them could float,

but the other one would not find a S1-opponent who complies with COGUP.
1.2 Sort all possible subsets of E BSN(s) of OS2 in increasing lexicographic order to an

array S2LIST which may have S2NLIST elements.
COGUP considerations show that some subsets must be excluded because they are useless, particularly the ones

which involve: the last element; two of the last three elements; three of the last five elements; and so on.

For instance, with E=2, the subsets containing the last BSN of S2 (i.e. LN) or two of the last three BSNs (i.e. the

subset of <LN-2, LN-1>, as the subsets <LN-2, LN> and <LN-1,LN> are already subsets containing LN) are to

be excluded from S2LIST: if such elements were moved to S1, it would be impossible for at least one of them to

find a S2-opponent who complies with COGUP.

1.3 Assign a difference to each possible exchange. It is a number defined as:

(Sum of BSN(s) from OS2,

included in that exchange)
-

(Sum of BSN(s) from OS1,

included in that exchange)

In functional terms:

DIFFERENZ(I,J) =
sum of BSN(s) from OS2 in subset J -

sum of BSN(s) from OS1 in subset I

This difference has:

a minimum: DIFFMIN = DIFFERENZ(1,1)

and a maximum: DIFFMAX = DIFFERENZ(S1NLIST, S2NLIST)

Q.2 CNT=0, DELTA=DIFFMIN

Q.3 I=1, J=1

Q.4 if DELTA = DIFFERENZ(I,J) then CNT=CNT+1, GSE[CNT]={I,J}
Note: {I,J} means the E BSN(s) from the subset I of S1LIST followed by the E BSN(s) from subset J of S2LIST.

Q.5 if J < S2NLIST then J=J+1, goto Q.4

Q.6 if I < S1NLIST then I=I+1, J=1, goto Q.4

Q.7 DELTA = DELTA+1

Q.8 if DELTA <= DIFFMAX goto Q.3

Q.9 return GSE

