APPENDIX P
 PAIRING PROCEDURES GUIDELINES

This appendix is a technical aid to help clarify the pairing procedures. It in no way constitutes a set of rules.
P. 0 The highest scoregroup constitutes the first bracket.

P. 1 Determine bracket variables

1.1 Be NP the number of players in the bracket
1.2 Determine M0 (number of MDPs) according to B.1.a

Set Res = NP - M0 (Res: number of residents)
Set CMP $=\min ([\mathrm{NP} / 2]$, Res) (CMP: Candidate Max Pairs)
1.3 Set Fls = NP - $2 *$ CMP (Fls: number of floaters)

Set FFSList = empty (FFSList: list of forbidden set of floaters, useful when Fls >0)
1.4 $\operatorname{Set} \mathbf{C M 1}=\min (\mathrm{M} 0, \mathrm{CMP})($ CM1: Candidate M1 $)$

P. 2 Find active criteria and set their minima (except CLB)

Note: minima are not set for the CLB. The reason is explained later (see 4.4.b.1.b).

$2.1 \quad$ C6

a C6 is active, if the bracket is heterogenous (i.e. $\mathrm{M} 0>0$)
b For details about the computation of minC6, see P.3.2

$2.2 \quad \mathbf{C 8}$

a Be CD2W the number of topscorers (or possible opponents) with $\mathrm{CD}>+1$ Be CD2B the number of topscorers (or possible opponents) with CD <-1 ($C D$ is the colour difference of a player - see A.6)
b C. 8 is active if in the bracket neither CD2W nor CD2B are equal to NP, and:

- there are at least a topscorer and another player all with $\mathrm{CD}>+1$ (or)
- there are at least a topscorer and another player all with $\mathrm{CD}<-1$
c minC8 is the number of topscorers (or possible opponents) whose ICDI cannot be less than 2 .
It is equal to $\max (0, \max (C D 2 W, C D 2 B)-(N P-C M P))$

$2.3 \quad \mathbf{C 9}$

a Be WW the number of topscorers (or possible opponents) who had White in the last two played rounds
Be BB the number of topscorers (or possible opponents) who had Black in the last two played rounds
b C9 is active if in the bracket neither WW nor BB are equal to NP, and:

- if $\mathrm{BB}>0$, there are at least a topscorer and another player with an absolute preference for White (or)
- if $\mathrm{WW}>0$, there are at least a topscorer and another player with an absolute preference for Black
c minC9 is the number of topscorers who cannot help but receive the same colour for the third consecutive round.
It is equal to $\max (0, \max (W W, B B)-(N P-C M P))$

$2.4 \quad \mathbf{C 1 0}$

a Be wS the number of players who expect White
Be bS the number of players who expect Black
b C10 is inactive when any of the following conditions applies:

- all players expect the same colour $(N P=\max (w S, b S))$
- at most one player per colour has a colour preference ($\max (w S, b S)<=1)$
- there are no floaters $(F l s=0)$ and at most one player has a colour preference different from all other players ($\min (N P-w S, N P-b S)<=1)$
$C 10$ may be inactive also in other conditions (e.g. if at least $C M P+F l s$ players have the same absolute preference in rounds before the last one)
c minC10 (which is also called X) is the number of players who cannot receive the expected colour.
It is equal to $\max (0, \mathbf{C M P}-(\mathbf{N P}-\mathbf{w S}-\mathbf{b S})-\min (\mathbf{w S}, \mathrm{bS}))$

$2.5 \quad \mathbf{C 1 1}$

a Be WS the number of players who have a strong or absolute preference for White
Be BS the number of players who have a strong or absolute preference for Black
b C11 is inactive when any of the following conditions applies:

- all players have the same strong preference ($N P=\max (W S, B S)$)
- at most one player per colour has a strong or absolute colour preference ($\max (W S, B S)<=1$)
- there are no floaters $(F l s=0)$ and at most one player has a strong colour preference different from all other players ($\min (N P-W S, N P-B S)<=1)$
c $\operatorname{minC11}$ (which is also called Z) is the number of players whose strong preference cannot be fulfilled.
It is equal to $\max (0$, CMP - (NP $-\mathbf{W S}-\mathrm{BS})-\min (\mathrm{WS}, \mathrm{BS}))$

$2.6 \quad \mathbf{C 1 2}$

a Be D1 the number of residents who received a downfloat in the previous round
b If $0<\mathrm{D} 1<$ Res, C 12 is active when pairing the CLB or when Fls >0 (the bracket produces downfloaters)
c In standard brackets, minC12 is the number of residents who cannot help but receive the same downfloat as the last round.
It is equal to $\max \left(0\right.$, D1-2 ${ }^{*}$ CMP + CM1)
Reason: CM1 $+2 *(C M P-C M 1)$ is the number of residents who play with MDPs and among themselves. If D1 is bigger than this number, some of the DI residents will be forced to get a downfloat.

$2.7 \quad \mathbf{C 1 3}$

a Be U1 the number of residents who received an upfloat in the previous round
b If $0<\mathrm{U} 1<$ Res, C 13 is active when pairing the CLB or when CM1>0 (i.e. heterogeneous brackets, where not all MDP(s) are in the Limbo)
c minC13 is the number of residents who cannot help but receive the same upfloat as the last round.
It is equal to $\max (\mathbf{0}, \mathbf{U 1}-\operatorname{Res}+\mathbf{C M 1})$
Reason: Res-CM1 is the number of residents who are non forced to meet a MDP. If U1 is bigger than this number, some of the U1 residents will be forced to play with a MDP

$2.8 \quad$ C14

a Be $\mathbf{D} 2$ the number of residents who received a downfloat two rounds ago
b If $0<$ D2 $<$ Res, C14 is active when pairing the CLB or when Fls >0
c minC14 is the number of residents who cannot avoid to receive the same downfloat as two rounds ago.
It is equal to $\max (0, D 2-2 * \mathbf{C M P}+\mathbf{C M 1})$

$2.9 \quad \mathbf{C 1 5}$

a Be $\mathbf{U} \mathbf{2}$ the number of residents who received an upfloat two rounds ago
b If $0<\mathrm{U} 2<$ Res, C 13 is active when pairing the CLB or when CM1>0
c minC15 is the number of residents who cannot avoid to receive the same upfloat as two rounds ago.
It is equal to $\max (\mathbf{0}, \mathbf{U 2} \mathbf{-}$ Res + CM1)

$2.10 \quad \mathbf{C 1 6}$

a Be R1 the number of players who received a downfloat in the previous round and have a higher score than the lowest ranked player in the bracket
b If $\mathrm{R} 1>0, \mathrm{C} 16$ is active when pairing the CLB or when M0>CM1
c In a standard bracket, the check-value of C16 is a sorted list (like in PSD computation, see A.7) of values given by the $\mathrm{SD}(\mathrm{s})$ of the Limbo elements who received a downfloat in the previous round (for the other Limbo elements who did not receive a downfloat in the previous round, the list value is 0).
In the CLB, as C16 considerations are made also in resident pairs (as the score of the two players may be unequal), all pairs are considered (hence the list has a length of $C M P+F l s)$, and non-zero values are set for pairs where the higher-ranked-player (the one from S1) has a higher score than his opponent and received a downfloat in the previous round.
d $\operatorname{minC} 16$ is a list with a zero value for each element.
Note: having initially all zeroes is not particularly accurate (e.g. if M0=3,CM1=2 and two of the MDPs got a downfloat in the previous round, there will be always a non-zero element in the list), but it would be quite complicate to introduce more precise rules.

$2.11 \mathbf{C 1 7}$

a C 17 is active when $\mathrm{U} 1>0$ (see P.2.7.a) and the players of the bracket have at least three different scores
b The check-value of C 17 is a sorted list of values given by the $\mathrm{SD}(\mathrm{s})$ of the games where the lower-ranked-player has a lower score than his opponent and has received an upfloat in the previous round.
Such list contains M1 elements in standard brackets and CMP elements in the CLB.
c $\operatorname{minC} 17$ is a list with a zero value for each element.

$2.12 \mathbf{C 1 8}$

a Be $\mathbf{R 2}$ the number of players who received a downfloat two rounds ago and have a higher score than the lowest ranked player in the bracket
b If $\mathrm{R} 2>0, \mathrm{C} 18$ is active when pairing the CLB or when M0>CM1
c In a standard bracket, the check-value of C18 is a sorted list of values given by the $\mathrm{SD}(\mathrm{s})$ of the Limbo elements who received a downfloat two rounds ago (for the other Limbo elements who did not receive a downfloat two rounds ago, the list value is 0).
In the CLB, as C18 considerations are made also in resident pairs (as the score of the two players may be unequal), all pairs are considered (hence the list has a length of $C M P+F l s)$, and non-zero values are set for pairs where the higher-ranked-player (the one from S1) has a higher score than his opponent and received a downfloat two rounds ago.
d $\operatorname{minC} 18$ is a list with a zero value for each element.

$2.13 \mathbf{C 1 9}$

a C19 is active when $\mathrm{U} 2>0$ (see P.2.9.a) and the players have at least three different scores
b The check-value of C19 is a sorted list of values given by the $\mathrm{SD}(\mathrm{s})$ of the games where the lower-ranked-player has a lower score than his opponent and has received an upfloat two rounds ago.
Such list contains M1 elements in standard brackets and CMP elements in the CLB.
c minC19 is a list with a zero value for each element.

P. 3 First pairing generation

3.0 If the bracket is the CLB then set target=best, otherwise set target=perfect
target represents the kind of search that is performed: perfect means look for the perfect pairing; best means look for the best pairing (track the current best, called champ)
Set legal = false
legal becomes true as soon as the bracket produces its first legal pairing
3.1 Generate the first candidate pairing (simply called candidate) for the bracket (see Section B).
3.2 If the bracket is not the CLB and C. 6 is active, set minC6 equal to the PSD of the first candidate.

P. 4 Pairing search

4.0 The first pair that creates "trouble" in a bracket is called pair-of-failure (POF).

If the "trouble" depends on a downfloater, the POF is the last pair (i.e. the CMP-th pair).
The initial set is $\mathrm{POF}=\mathrm{CMP}$.
4.1 If there is a champ (this is only possible if target is best)
a if PSD (candidate) $>\operatorname{PSD}$ (champ), the candidate is discarded and goto P.4.7 for a new candidate; otherwise set online=false
online represents a state of the candidate: when false, it means that the current failure values of the candidate (which may be worsening during the procedure) say that the candidate is (currently) better than the champ. When online is true, the candidate has at least the same failure values as the champ - as soon as a failure-value of the candidate becomes worse than the corresponding failure value of the champ, the candidate is discarded.
4.2 Floater verification (if Fls >0):
a if the bracket is the PPB, verify floaters against the SCS (call
CompletionCheck(floaters, SCS)).
If the verification fails, the candidate is discarded and goto P.4.7 for a new candidate; otherwise goto P.4.3
b if the bracket is not the CLB, check whether the current set of floaters is included in the FFSList. If so, the candidate is discarded and goto P.4.7 for a new candidate.
4.3 If target is perfect and PSD (candidate) $=\operatorname{minC6}$, set probable=true; otherwise set probable=false
As long as vrobable is true, the candidate can be a perfect pairing.
4.4 For each pair P of the candidate (numbered from 1 to CMP) and for each floater (P doesn't change while scrutinizing floaters, i.e. it is equal to CMP):
a if the pair fails any absolute criterion, the candidate is discarded. If target is perfect and there is a champ, set $\mathrm{POF}=\mathrm{min}(\mathrm{P}, \mathrm{POF})$; otherwise set $\mathrm{POF}=\mathrm{P}$. Then goto P.4.7 for a new candidate
$P O F=\min (P, P O F)$ eliminates all the candidates that have a failure in a pair that precedes the one with an absolute failure; such elimination can be applied when looking for a perfect pairing as long as a champ has already been set.
b for each criterion (C8-C11,C13,C15,C17,C19 for pairs; C12,C14,C16,C18 for floaters), provided that is active (be C_{i} such criterion)
1 If the pair or the floater fails C_{i} :
a increment failure counter F_{i} for criterion C_{i}
b if probable is true and $\mathrm{F}_{\mathrm{i}}>\operatorname{minC}_{\mathrm{i}}$, set probable $=$ false
Note: this is the only place where minima are used; hence, minima are used only when probable is true. As in the CLB probable is always false (see P4.0 and P4.3), minima are never used in the CLB.
c if target is perfect, set $\mathrm{POF}=\min (\mathrm{P}, \mathrm{POF})$
d if there is a champ, set online to true if, for each criterion C_{j} that precedes C_{i} (including C6), the candidate $-\mathrm{F}_{\mathrm{j}}$ is equal to the champ- F_{j}. Otherwise, set online to false.

2 If there is a champ and online is true:
a if the candidate- F_{i} is higher than the champ $-\mathrm{F}_{\mathrm{i}}$, the candidate is discarded, set $\mathrm{POF}=\min (\mathrm{P}, \mathrm{POF})$, and goto P .4 .7 for a new candidate
b if the candidate $-\mathrm{F}_{\mathrm{i}}$ is less than champ $-\mathrm{F}_{\mathrm{i}}$, set online $=$ false
Note: if candidate $-F_{i}$ is equal to champ $-F_{i}$ and there is a candidate- F_{k} higher than a champ- F_{k}, with C_{k} following C_{i}, the candidate will be discarded when analyzing C_{k} (i.e. later in the process).
4.5 \quad Set legal $=$ true (a legal pairing was found)
4.6 a If probable is true (assert: target $=$ perfect $)$, the candidate is the Probable Pairing. Go to 4.8 for the relevant checks
b If online is false, the candidate becomes the new champ
c If online is true (which means that candidate and champ have exactly the same F_{i} failure values): the candidate is discarded (as it is being generated later than the champ)
4.7 Generation of a new pairing (a new candidate) using POF (call GetNextPairing(candidate, POF)):
a if it was possible to generate a new pairing, restart from P. 4
b (assert: a new pairing was not generated, and, obviously no perfect pairing was found)
if legal is true:
1 if target is perfect, set target=best and restart from P.3.1
2 if a champ exists, such champ is named the Probable Pairing: goto P.4.8 for the relevant checks

3 (no champ exists, but legal being true means that FFSList is not empty) bestP (see P.4.8.b.3) is the Definitive Pairing. Goto P. 5 for the completion check
c (assert: legal is false $=>$ no pairing whatsoever was generated)
if M0 >0 and M0-CM1 < Fls, set CM1 = CM1 - 1 and restart from P.2.
(assert: $C M P>0$; with $C M P=0$, i.e. all float, legal cannot become false)
Otherwise, set CMP = CMP - 1 and restart from P.1.3.
4.8 If there are floaters in the Probable Pairing, check whether such set of floaters (called FS) maximizes the next bracket (call FloatersVerification(FS)); if there are no floaters or the above check succeeded, the Probable Pairing is the Definitive Pairing and goto P. 5 for the completion check.
Otherwise (i.e., the FloatersVerification failed):
a if target is perfect (i.e. the Probable Pairing is a candidate), the candidate is discarded and goto P.4.7 for a new candidate
b (assert: target is best, i.e. the Probable Pairing is a champ)
1 a pairing of the following bracket is returned as the result of the failed check. Be fbPairs the number of pairs of such pairing, and fbPSD its PSD. add FS to the FFSList

3 if bestP, and consequently nextPairs and nextPSD, do not exist, or, if they exist and either fbPairs $>$ nextPairs or fbPairs $=$ nextPairs and fbPSD $<$ nextPSD, set nextPairs to fbPairs, nextPSD to fbPSD and bestP to the Probable Pairing.
reset the champ (i.e. from now on, a champ is no more existent), and restart from P.3.1

P. 5 Completion Check

5.1 Unless the current bracket is the PPB:
a with the floaters defined by the (perfect) pairing found in P.4.5 or by the (imperfect) pairing found in P.4.7.2.a (which may be none), and all the players coming from the successive scoregroups (rest), call CompletionCheck(floaters, $\underline{r e s t})$ to verify whether it is possible to find a legal pairing in the combined bracket made of the floaters and the rest.
b If the completion-check is successful, the pairing is definitively approved. Continue with P.5.2.
c If the completion-check fails, the current bracket is called PPB and the rest is called SCS.
The pairing process restarts from P.3.
5.2 If there is a successive scoregroup (which is the SCS if the current bracket is the PPB), the pairing process continues with the bracket composed of the floaters of the current pairing and the successive scoregroup. With this new bracket, restart from P.1.
5.3 If there are no more scoregroups, the pairing process ends

Subroutine CompletionCheck(DFs, Rest)

0.0	Build Main, the combined list of players coming from DFs and Rest
0.1	Add Main to the Verification container Set Verification[1] <= Main indexVerification $=1$
0.2	$\begin{aligned} & \hline \text { Extract from Verification the latest list it contains and put it in WorkingList } \\ & \text { Set WorkingList }<=\text { Verification[indexVerification] } \\ & \underline{\text { indexVerification }}=\underline{\text { indexVerification }-1} \end{aligned}$
0.3	Take any player from WorkingList, for instance the first one Set player $=$ WorkingList[1]
0.4	Build OL, the list of players in the WorkingList who may face player in the current round
0.5	If OL is empty: It means that the players in the WorkingList cannot be paired among themselves, as there is at least one player (e.g. player) that doesn't have an opponent. Try with another list, if one exists (i.e. when the Verification container is not empty), otherwise it means that no list can produce a pairing (which is a failure)
	5.1 If indexVerification $=0$ (i.e. the Verification container is empty), return False
	5.2 Goto O.2 (since at least one list still exists)
0.6	For each possible opponent of plaver create a new list without the player and his possible opponent (in other words, it simulates the two players have been paired) For each element (be opponent) of OL:
	8.1 Exclude from WorkingList player and opponent Set newList <= WorkingList - player - opponent 8.2 not
	8.2 $\begin{array}{l}\text { If newList is empty (i.e. two at a time, all players have been paired), return True (the } \\ \text { verification was successful) }\end{array}$ 8.3 (ther
	8.3 Add the new list to the Verification container indexVerification $=\underline{\text { indexVerification }}+1$ $\underline{\text { Verification }}[\underline{i n d e x V e r i f i c a t i o n] ~}=\underline{\text { new }}$ List
0.7	Goto O. 2 (i.e. continue with the latest inserted list which, by construction, has two less players than WorkingList)

Pairing Generation

The Pairing Generation is a collection of subroutines working together for the goal of producing a new candidate pairing or to inform the main process that it is not possible to generate new pairings for the bracket.

Invoking the Pairing Generation (with two parameters: the current candidate and the pair-of-failure - POF, from now on) basically means invoking the driver of the aforementioned subroutines, the function GetNextPairing, which returns either a new pairing or NULL, if it is impossible to generate a new pairing.
To process the GetNextPairing, a few other subroutines may be called to manage specific tasks:

Next
Exchange

GenerateSequence
 BuildLimboList

to get the next meaningful transposition
to perform an exchange in a homogeneous pairing (called by Next, when no meaningful transpositions is avaialable for a given POF)
to create a sequence of possible exchanges
to create a list of all possible Limbos

The variables M0, NP, CMP and CM1 are used in the Pairing Generation subroutines. They are inherited from the main process, although NP, CMP and CM1 may also be computed from the input candidate pairing (in other words, only M0 is in an independent information).

A pairing is made of an ordered list of pairs and a set (i.e. unordered) of floaters.
From any pairing, it is always possible to retrieve two ordered lists of BSN(s). The first list (L1) contains the higher BSN of each pair (ordered following the order of the pairs). The second list (L2) contains the lower BSN of each pair (in the same order) followed by the floaters sorted by BSN. In any FIDE (Dutch) pairing, L1 contains CMP BSNs and L2 contains NP-CMP BSNs.

Note: It works also the other way: from two ordered list of $B S N(s)$, the first one containing B1Size BSN(s), the second one containing B2Size BSN(s), with B2Size \geq B1Size, it is possible to build a pairing made of B1Size pairs (the first element of B1 against the first element of B2; the second element of B1 against the second element of B2; and so on) and B2Size-B1Size floaters.
Such a resulting pairing is represented with the following symbolism: $\mathbf{B 1}<=>\mathbf{B} 2$.
The goal of the Pairing Generation subroutines is to build a new pairing to be analyzed by the main algorithm. In order not to waste time in preparing useless pairings, the following criterion (COGUP) must be fully respected.

Criterion for Optimizing the Generation of Useful Pairings (COGUP)

A pairing is useful if, in each of its pairs, the element coming from L1 has a lower BSN than that of the element coming from $L 2$.
For any pairing that contains a pair in which the L1-element has a BSN higher than that of the L2-element (i.e. a useless pairing), there is a correspondent useful pairing.
Any useful pairing is always generated before any of its correspondent useless pairings, because it has a lower number of exchanges.

Subroutine Next(L1, L2, POF)

$\mathbf{L} 1 \quad$ A list of $B S N(s)$ (in number of $\underline{\text { L1Size }) ; ~ b y ~ c o n s t r u c t i o n, ~ a l l ~ t h e ~} B S N(s)$ are either higher than M0 (homogeneous entity) or not higher than M0 (heterogeneous entity)
 L2 A second list of BSN(s), in number of L2Size, with L2Size \geq L1Size
 POF A number not lower than 1 and not higher than L1Size; in the $L 1<=>L 2$ pairing, it represents the pair that should be changed (actually, at least one of the first POF pairs is to be changed)

Return Either a new meaningful pairing (i.e. it complies with the COGUP), made of elements coming from L1 and L2, or NULL, if it is impossible to generate a new pairing.

Overview

When this function is called for the first time, $L 1<=>L 2$ is a candidate pairing or a part of a candidate (MDP-pairing or remainder). However, during the processing, the function may be recursively called many times and the initial condition does not hold anymore.
Its immediate goal is to find a transposition of L2, be NL2, which follows L2 (from the POF ${ }^{\text {th }}$ pair on). L1 will not change. If no more transpositions are available, apply an exchange (if the entity is homogeneous), by calling Exchange, which will define, if possible, a NL1 different from L1 (and a consequent NL2); or return NULL.
When a new pairing is defined (either because a transposition was found or directly after an exchange), it is subject to the COGUP. If the COGUP is positive, the new pairing is returned, otherwise the Next function is recursively called with new input parameters.

N. 1	The first POF-1 BSN(s) of NL2 (possibly none) are the first POF-1 BSN(s) of L2	
N. 2	The $\mathrm{POF}^{\text {th }} \mathrm{BSN}$ of L2 is called the pivot	
N. 3	Collect the BSN(s) of L2, from the pivot to the last one, in a set called R2 Hence, by construction, $\underline{R 2}$ contains L2Size-POF elements - take notice that $R 2$ includes the pivot	
N. 4	Take the lowest BSN of R2, higher than the pivot (be B2). If there is none (i.e. no useful transpositions are available from the current pivot), goto N.5.	
	4.1	$\underline{\mathrm{B} 2}$ is the $\mathrm{POF}^{\text {th }} \mathrm{BSN}$ of NL2 (this complies with the COGUP)
	4.2	Sort the other BSN(s) of R2 from the lowest to the highest. They constitute, in that order, the next L2Size-POF-1 BSN(s) of NL2.
	4.3	Set returnPairing $=\mathrm{L} 1<=>$ NL2
	4.4	Goto N. 7
N. 5	If POF > 1	
	5.1	Set $\underline{\text { returnPairing }}=\boldsymbol{\operatorname { N e x t } (L 1 , L 2 , \boldsymbol { P O F } - \mathbf { 1 })}$ (continue recursively the search of a useful transposition from the element before the current pivot)
	5.2	Goto N. 7
N. 6	(assert: $P O F=1$)	
	6.1	If all BSN(s) of L1 are not higher than M0, return NULL (in L1 there are only $\operatorname{MDP}(s)$, which, by definition, cannot be exchanged)
	6.2	set returnPairing $=\boldsymbol{E x c h a n g e}(\boldsymbol{L} 1, \boldsymbol{L 2})$ (the POF is the first pair of the candidate, which means that all transpositions have been used up - hence, look for an useful exchange)
	6.3	if returnPairing = NULL (i.e. no more available exchanges), return NULL
N. 7	Check the COGUP for returnPairing (which has its own $\underline{\boldsymbol{R L 1}}$ and $\underline{\boldsymbol{R L 2}}$ lists)	
	7.1	If the COGUP fails at the $\mathrm{F}^{\text {th }}$ pair, return $\underline{\operatorname{Next}(\boldsymbol{R L 1 , R L 2 , F}}$
	7.2	If the COGUP is OK, return returnPairing

Example of use of Next

Be L1=[1,2,4,5,6] and L2=[8,3,9,12,11,(7 10)].
Two situations, with $\underline{\mathrm{POF}=5}$ (failure on $6-11$ or on the floaters) and with $\mathrm{POF}=2$ (failure on 2-3)

POF is 5	POF is 2
L2=[8,3,9,12,11,(7 10)]	L2=[8,3,9,12,11,(7 10)]
NL2 $=[8,3,9,12$	NL2 $=[8$
pivot $=11$	pivot=3
$\mathrm{R} 2=\{7,10,11\}$	$\mathrm{R} 2=\{3,7,9,10,11,12\}$
B2 does not exist	B2=7
call Next(L1, L2, 4)	NL2=[8,7,3,9,10 (11,12)]
NL2=[8,3,9	L1 $=[1,2,4,5,6$]
pivot $=12$	COGUP: [4,5,6] vs [3,9,10] failure at 3 (third pair)
$\mathrm{R} 2=\{7,10,11,12\}$	call Next(L1, NL2, 3)
B2 does not exist	NL2=[8,7
call Next(L1, L2, 3)	pivot=3
NL2 $=[8,3$	$\mathrm{R} 2=\{3,9,10,11,12\}$
pivot=9	B2=9
$\mathrm{R} 2=\{7,9,10,11,12\}$	NL2=[8,7, 9,3,10 (11,12)]
B2 $=10$	COGUP: [5,6] vs [3,10] failure at 3 (fourth pair)
NL2 $=[8,3,10,7,9,(11,12)]$	call Next(L1, NL2, 4)
$\mathrm{L} 1=[1,2,4,5,6]$	NL3=[8,7,9
COGUP [5,6] vs [7,9] OK =>	pivot=3
return 1-8 2-3 4-10 5-7 6-9 $\mathrm{F}=\{11,12\}$	$\mathrm{R} 2=\{3,10,11,12\}$
	B2 $=10$
	NL3=[8,7, 9, 10,3 (11,12)]
	COGUP: [6] vs [3] failure at 3 (fifth pair)
	$\frac{\text { call Next }(L 1, N L 3,4)}{\text { NL } 4=[8,7,10}$
	NL4=[8,7,9,10 pivot=3
	$\mathrm{R} 2=\{3,11,12\}$
	B2 $=11$
	NL4=[8,7, 9, 10,11 (3,12)]
	COGUP: not needed return 1-8 2-7 4-9 5-10 6-11 $\mathrm{F}=\{3,12\}$

```
Subroutine Exchange (L1, L2)
L1Size => number of elements in L1; L2Size => number of elements in L2;
```



```
\boldsymbol{FSN}}=>>number of floaters, equal to L2Size - L1Size
Premise: this routine works with numbers that go from 1 to LN. If there are holes in the union of L1 and L2 (L1::L2) -something that
happens in remainders-, map the L1/L2 BSNs in a list of numbers from 1 to LN before proceding.
    Example: if L1 contains [2 4 6] and L2 [8 5 9 7], the mapping is 2=>1,4=>2,5=>>,6=>>4,7=>5, 8=>6,9=>7; the
    remapped-L1 is [1 2 4] and the remapped-L2 is [6 3 7 5]
```

At the end of the procedure, before returning the pairing, remap the numbers used in the process to the original BSNs.

L1 A list of LISize BSN(s)
 L2 A list of L2Size BSN(s)

L1 and L2 have no common elements.
Return NULL, if no more exchanges are possible. Otherwise, return a pairing that, if expressed in the form NL1 $<=>\underline{\text { NL2 }}$, has NL1 different from L1.

Overview

Be OS1 the original S1, i.e. the (possibly remapped) BSN(s) from 1 to L1Size.
Be $\underline{\mathbf{O S 2}}$ the original S2, i.e. the (possibly remapped) BSN(s) from L1Size+1 to $\underline{L N}$.
Although it is possible to move from an exchange to the next one, trying to build a routine that does just that is not worth the while. It is a lot simpler to prepare a full list of the needed exchanges at the beginning (see below, though, for the extended meaning of "beginning") and then, each time that the procedure is invoked, take the next element from this list.
Hence, the first time the procedure is invoked, GenerateSequence(1) is called to generate the sequence of exchanges of one BSN. It returns GS1, a sequence of G1 elements, each one of them composed of a t-uple of two BSNs, the first one is a BSN from OS1, the last one is a BSN from OS2 (the one-by-one BSNs to be exchanged). The G-counter, an index varying from 1 to G1, is set to 1 , and the first invocation returns GS1[G].
Each subsequent invocation of Exchange, as long as the G-counter is less than G1, increments the G-counter of one and returns GS1 [\underline{G}]. When $\underline{G}=\underline{G 1}$, GenerateSequence(2) is called to generate the sequence of exchanges of two BSNs. It returns GS2, a sequence of G2 elements, each one of them composed of a t-uple of four elements, the first two being BSNs from OS1, and the last two being BSNs from OS2 (the two-by-two BSNs to be exchanged). The G-counter, an index varying from 1 to G 2 , is set to 1, and GS2[G] is returned after the first invocation.
An so on.
COGUP considerations say that the maximum number of exchanges, Emax, is given by L2Size/2 rounded downwards (whereas, with a higher number of exchanges, the COGUP will unavoidably fail).
As a consequence, GenerateSequence(Emax) is the last sequence that will be built. After exhausting all elements of the above sequence, the procedure must return a failure (NULL), meaning that no more exchanges are possible.

Note: the G-counter (i.e. \underline{G}), is a global variable, automatically initialized to 0 .

Subroutine GenerateSequence (E)		
This routine uses variables that were defined or computed inside the function Exchange: LN, FTS, Emax, OS1, OS2.		
E A number between 1 and Emax		
Return		A sequence of t-uples, each of them containing $2 * \mathrm{EBSNs}$, representing the BSNs (the first E from $O S 1$, the last E from $\underline{O S 2}$) that have to be exchanged.
The routine is first executed to build the sequence of all the possible exchanges of one element. Then it is executed again when this sequence has been used up (by Exchange), to build the new sequence of all the possible exchanges of two elements - and so on until the sequence of exchanges of Emax elements.		
Q. 1	Initialization phase	
	1.1	Sort all possible subsets of E BSN(s) of OS1 in decreasing lexicographic order to an array S1LIST, which may have S1NLIST elements. COGUP considerations show that some subsets must be excluded because they are useless, particularly the ones which involve: all the first $\underline{F S N}+1$ BSNs; $\underline{F S N}+2$ of the first $\underline{F S N}+3$ BSNs; $\underline{F S N}+3$ of the first $\underline{F S N}+5$ BSNs; $\underline{F S N}+4$ of the first $\underline{F S N}+7$ elements; and so on. For instance, if the bracket has to produce a floater ($F S N=1$), and $E=2$, the subset with the first two BSNs of OS1 (i.e. 1 and 2) is to be excluded from S1LIST, because, if $1-2$ were both moved to $S 2$, one of them could float, but the other one would not find a S1-opponent who complies with COGUP.
	1.2	Sort all possible subsets of E BSN(s) of OS2 in increasing lexicographic order to an array S2LIST which may have S2NLIST elements. COGUP considerations show that some subsets must be excluded because they are useless, particularly the ones which involve: the last element; two of the last three elements; three of the last five elements; and so on. For instance, with $E=2$, the subsets containing the last $B S N$ of $S 2$ (i.e. $\underline{L N}$) or two of the last three BSNs (i.e. the subset of $\langle\underline{L N}-2, \underline{L N-1>}$, as the subsets $<\underline{L} N-2, \underline{L N}\rangle$ and $<\underline{L N}-1, \underline{L N}>$ are already subsets containing $\underline{L N})$ are to be excluded from S2LIST: if such elements were moved to S1, it would be impossible for at least one of them to find a S2-opponent who complies with COGUP.
	1.3	Assign a difference to each possible exchange. It is a number defined as: (Sum of BSN(s) from OS2, (Sum of BSN(s) from OS1, included in that exchange) included in that exchange)
		In functional terms: $\operatorname{DIFFERENZ}(\underline{I}, \underline{\mathbf{J}})=\begin{aligned} & \text { sum of } \operatorname{BSN}(\mathrm{s}) \text { from } \underline{\mathrm{OS} 2} \text { in subset } \underline{\mathrm{J}}- \\ & \text { sum of } \operatorname{BSN}(\mathrm{s}) \text { from } \underline{\mathrm{OS} 1} \text { in subset } \underline{\underline{I}} \end{aligned}$ This difference has: a minimum: DIFFMIN $=$ DIFFERENZ $(1,1)$ and a maximum: $\underline{\text { DIFFMAX }}=\underline{\text { DIFFERENZ }}(\underline{S 1 N L I S T}, \underline{\text { S2NLIST }})$
Q. 2	CNT $=0$, DELTA $=$ DIFFMIN	
Q. 3	$\underline{\mathbf{I}}=1, \underline{\mathbf{J}}=1$	
Q. 4	if $\underline{\text { DELTA }}=\underline{\text { DIFFERENZ }}(\mathrm{I}, \mathrm{J})$ then $\mathrm{CNT}=\mathrm{CNT}+1, \underline{\mathrm{GSE}}[\mathrm{CNT}]=\{\mathrm{I}, \mathrm{J}\}$	
Q. 5	if $\mathrm{J}<\underline{\mathrm{S} 2 N L I S T}$ then $\underline{\mathrm{J}}=\underline{\mathrm{J}}+1$, goto Q. 4	
Q. 6	if $\underline{\mathrm{I}}<\underline{\text { S1NLIST }}$ then $\mathrm{I}=\underline{\mathrm{I}}+1, \underline{\mathrm{~J}}=1$, goto Q. 4	
Q. 7	$\underline{\text { DELTA }}=\underline{\text { DELTA }}+1$	
Q. 8	if DELTA <= DIFFMAX goto Q. 3	
Q. 9	return GSE	

