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ABSTRACT 

 

FIDE Swiss (Dutch) and Swiss Dubov pairing systems are compared by means of 

extensive simulations (15000 Dubov tournaments. 15000 FIDE (Dutch) and 15000 

double round robin), with the aim to verify the reliability of the obtained standings and 

whether Dubov system can actually achieve its goal of equalising ARO in scoregroups. 

To highlight the differences between the two systems, we analysed ARO in 

scoregroups, and players’ positions in final standings, comparing the Swiss systems 

between themselves and with round robin. 

Players’ distribution in scoregroups is similar, but for a slight tendency of FIDE Swiss 

towards a sharper selection of top and bottom ranks, and a slightly more difficult path 

for top players. Dubov system partially equalises ARO in middle standings, but the 

effect is smaller for top and bottom ranks, where FIDE Swiss gives similar or better 

results. This seems to imply that the tournament winner meets a stronger and more 

uniform opposition with FIDE Swiss than with Dubov system. Standings linearity seems 

to be comparable – however, standings created by FIDE Swiss show a smaller deviation 

from the ideal and a slightly smaller uncertainty. The podia composed by the two 

systems are fairly similar, with only small and fluctuating differences. 

In conclusion, the goal of ARO equalisation is at least partially achieved. However, this 

does not seem to yield “higher fidelity” standings and therefore fairer results for the 

tournament. 
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GENERALITIES 

The strategic goal of the Dubov Swiss system is that of equalising players’ ARO in each scoregroup, with the 

aim to make the encountered opposition as uniform as possible for players with the same score. In the 

philosophy of the system, this ensures fair pairings. 

In the present paper we compared the behaviours of FIDE Swiss (Dutch) and Dubov pairing systems; and 

tried to verify whether the latter achieves its own strategic goal better than the far more well-known and 

widespread FIDE Swiss (Dutch) system. 

The tournament as a measurement process 

The primary goal of a tournament is to decide who, among a set of players, is the strongest; and, 

subordinately, to classify all players, or at least a part of them, based on their respective playing strength. 

The tournament can thus be construed as a measurement process for the playing strength of players. 

It is however a peculiar process, in that we have no “example player” to be used as a unit of measure. In 

fact, our examples are the measured players themselves, in an iteration process working per successive 

comparisons. At each iteration (i.e., round), each player is compared to another one, whose playing 

strength is only approximately known – by means of the rating and the results achieved up to that moment. 

The outcome of each comparison is quantised in only three values (win, loss, draw) and brings a 

consequently small quantity of information, no more than approximately 1,6 bit
1
.  

This process, like any measurement, is characterized by some key parameters: 

- Resolution (or the ability to reveal small differences), which depends on the difference in playing 

strength between paired players; and on the number of measurement cycles (rounds). For 

example, if player B lost to A and won against C, we can say that B’s playing strength is 

intermediate between A’s and C’s. If A is very strong, and C is very weak, the uncertainty interval is 

wide, while if A and C have similar strengths, the uncertainty if definitely narrower 

- Systematic error (depending on instruments and methods), due in part to playing conditions 

(which, for how hard we can try, we cannot make perfect, and may disturb players in different 

fashion); and in part to phenomena that are intrinsic to the game (for example, playing with black 

rather than white pieces is a well-known and partially quantifiable disadvantage
2
). For a round 

robin tournament, every player meets every other one once or twice. In Swiss type tournaments, 

each player usually meets only a small part of all the possible opponents. In this case, the 

systematic error also contains a component that depends on how the system chooses opponents 

- Stochastic error (i.e., random), due to the many unforeseeable fluctuations that can make the 

needle of the scales lean to one side or the other: a small incident, a slight discomfort, a moment’s 

distraction… 

In simple measurement processes, the measured quantity (weight, length …) is constant – it does not 

change during the measurement. We can therefore repeat the measurement over and over again and, by 

averaging results, attenuate the random error and, up to a point, simulate a better resolution (while the 

systematic error can be kept in check with calibration and adjustment procedures). 

                                                           
1
 The quantity of information (“informational entropy”) is maximum when all outcomes are equally probable, and decreases as one 

result becomes much more or much less probable than the other(s). This is actually a platitude: the more a game result is 

foreseeable, the smaller the quantity of information is. Hence, the first rounds bring little information (we can estimate an 

average well under 1 bit for first round(s), and sometimes as low as 0,75 bit/game), while the last rounds usually bring nearly the 

maximum possible information – although this is not always true of the very last round! (By the way, Accelerated Swiss systems 

work on the principle of substituting low-information rounds in order to enhance the total information obtained from the games.)
 

2
 See Milvang, Otto - Probability for the outcome of a chess game based on rating, SPP report 2016. 
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Our case is a bit more complex, because a player’s playing strength is not constant, not even on an average: 

it varies slowly with age and education; a little more rapidly with condition cycles; and, finally, in a fast way 

with physical and mental state – so fast that it can be even fairly different from game to game. Moreover, 

players’ playing strengths are not uncorrelated, because several players (especially amateurs) are 

somewhat intimidated by the opponent. 

No tournament, not even a round robin, can therefore really say who the strongest player is: to know that, 

we would need to play an infinite number (i.e., many…) of tournaments – and even doing so we could not 

get the “right” answer, simply because the playing strength is never the same. 

The conclusion is that we cannot expect a tournament to tell us which player is the strongest; at best, it can 

tell us, with reasonable reliability, which player played best in that particular event. 

From measure theory we know that, the larger is the number of the measures done, the better is the 

approximation of the result. In our case, each measure is a game – hence, we expect a result that is the 

more reliable, the larger the number of rounds is. For example, in a knock-out tournament, where the 

number of games per player is minimum, chance plays an important role – notwithstanding all the 

corrective method we can apply (e.g., top seed), though luck may sometimes knock out a definitely strong 

contestant. 

On the contrary, a double round robin tournament, in which each player meets each opponent twice (once 

with white and once with black pieces), has the maximum possible number of rounds (if N is the number of 

players, the tournament comprises N*(N-1) games). We therefore expect it to minimise the random error 

(and, by the way, also that part of the systematic error due to colour assignment). 

Somewhere between those extremes, we find Swiss tournaments, in which the number of games per 

contestant is fixed – and the same for all (except in case of forfeits…). However, different Swiss systems pair 

players with different methods – originating by different assumptions about the best way to obtain 

fairness: 

- the FIDE Swiss (Dutch) system implicitly assumes that the best way to select players is to equalise, 

as far as possible, the differences in playing strength for each pair of the scoregroup 

- the Dubov Swiss system explicitly assumes that the best way to select players is to equalise, as far 

as possible, the average rating of opponents (AROs) of the players in each scoregroup 

Those are “philosophical choices”, which we should not discuss; we shall rather investigate on the actual 

ability of the Dubov Swiss system to achieve its strategic goal of equalisation, and on the achievements of 

both the systems in terms of standings composition. 

The simulations 

First, I wish to thank Mr Roberto Ricca, former Secretary of the FIDE SPP Commission, currently a member of 

the FIDE Technical Commission – and one of best pairing experts in the world – who prepared all the 

simulated tournaments. In particular, the Simulations for Dubov 2019 were prepared by his new Dubov 

pairing engine included in JaVaFo and soon to be released. A similar analysis will also be run for the Burstein 

system – as soon as its rules (see FIDE Handbook, Section C.04. 4.2) are consistently defined as per the 

indications given by the FIDE SPP Endorsing Subcommittee report
3
, and a pairing engine is available.  

Our goal is to compare the behaviours of the two Swiss systems, in order to shed some light on the 

respective ability to create a “fair path” for the players, and “fair standings” that best denote the real 

playing strength of contestants. 

                                                           
3
 See the Meeting Minutes of Systems of Pairings and Programs Commission for the 89th FIDE Congress, held in Batumi, Georgia, in 

2018. The Minutes are available on the FIDE website: https://spp.fide.com/wp-content/uploads/2020/04/2018_minutes.pdf.
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In practice, we cannot simulate all the possible types of tournaments encountered in real life, hence we 

should limit the scope of our examination. We therefore chose to create three sets of samples, 

representative of some typical situations: 

- Group “A”: a typical “Masters” tournament with comparatively few players, from high-level 

amateurs, or Candidate Masters, up to Grand Masters 

- Group “B”: an integral “Open” with players of every level, from lowly amateurs up to Grand 

Masters 

- Group “C”: another “Masters” tournament but larger – such as we may have in a large event 

We used random tournaments generators to create several samples of the different types of tournaments, 

as shown in the following table. 

Group Sample System Rating 
Number of 

players 

Number 

of rounds 

Number of 

tournaments 

F68 FIDE Swiss 

(Dutch) 

2150-2615 68 9 5000 

D68 Dubov 2150-2615 68 9 5000 

A 

“Masters” 

R68 Double RR 2150-2615 68 (2x67) 5000 

F140 FIDE Swiss 

(Dutch) 

1416-2599 140 9 5000 

D140 Dubov 1416-2599 140 9 5000 

B 

“Open” 

R140 Double RR 1416-2599 140 (2x139) 5000 

F142 FIDE Swiss 

(Dutch) 

2150-2615 142 9 5000 

D142 Dubov 2150-2615 142 9 5000 

C  

“Masters” 

(Large) 
R142 Double RR 2150-2615 142 (2x141) 5000 

 

The ratings used for the simulations were partly coming from actually played tournaments and partly 

generated locally, in such a way as to give them a realistic distribution. All tournaments have nine rounds - 

a typical length of a tournament valid for international titles. 

All the tournaments generators assigned win, draw, or loss results in a random fashion, based on the 

probabilities determined by players’ ratings and colours
4
, in an attempt to simulate realistic tournament 

outcomes. 

In such simulations we know right from the beginning the “correct” standings. The outcomes of the 

tournaments statistically depend on the playing strengths assigned to players by means of their respective 

ratings, which are assumed to be constant. Sorting the players by descending ratings (as normal), we expect 

an ideal measurement to yield standings exactly related to the initial ranking list of players. Any deviation 

from this list is a (random) deviation of players’ behaviour from the expected playing strength given by 

their ratings – analogous to those that happen in real tournaments. We will therefore be able to verify if, 

and how much, the different pairing systems yield results that, on an average, are different from the 

expected ones, thus obtaining an approximated but statistically reliable evaluation. 

The standings coming from different pairing systems are the compared to each other and to the initial 

ranking list (ideally expected outcome), based on the average final position, the average final score, and the 

standard deviation of the position. Where needed, the final position in standings for Swiss systems was 

                                                           
4
 See note 2, page 2. 
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determined by Buchholz Cut-1 and APRO. In previous simulations, this combination proved to yield best 

results for the composition of the top standings, which are of prime concern. 

The standard deviation 

In this paper we extensively use the standard deviation, which is 

among most common statistical indicators. Before getting into 

samples analysis, we want to give some hints about the meaning 

of this quantity (the reader will find more information in a basic 

manual about statistics, or measure theory, or even physics). For 

simplicity, in this paragraph we always refer to the measurement 

of the weight of a generic object - however, what follows is 

equally true for all kinds of measurements. 

If we repeatedly put an object on the weighing plate of scales 

that have enough resolution, (almost) each time we read a 

different weight. By averaging all such results (i.e., adding all 

them together and then dividing the sum by the number of 

results), we obtain their mean, a value that is the nearer to the 

real value, the better the scales are (of course!) and the larger 

the number of measures we took is. 

The mean by itself does not tell us how precise our 

measurement is. For example, suppose we weighed a given 

object many times, using two different scales, in both cases 

obtaining a mean value of about 5 kg. However, on the first 

scales, all the readings were randomly distributed between 0 

and 10 kg; while, using the second scales, the readings were 

randomly distributed between 4.5 ÷ 5.5 kg. Intuition tells us at 

once that the uncertainty of the measure is far larger in the first 

instance than in the second, but statistics gives us theoretical 

tools to quantitatively evaluate the precision obtained in those 

two cases. 

Among the simpler of such tools there is the standard deviation, 

which is easily computed: first, we average all the measures, 

thus obtaining the mean; we then compute the differences 

between each measure reading and the mean and square them; 

last, we average those squares. We thus obtain a number that is 

called the variance of the given data
5
. The standard deviation is 

(by definition) the square root of variance, and can be seen as a 

measure of the “average distance” between the given data and 

their mean. The standard deviation is usually indicated by σ 

(lowercase Greek letter “sigma”). 

Let’s go back one step, and take another look at the measures: 

first we group and sort them in “classes”, based on their value 

(e.g., between 0-0.5, 0.5-1, 1-1.5 and so on). Then, we count the 

number of readings in each class. Lastly, we draw a diagram in 

which each class, in order, is represented by a rectangle whose height is proportional to the number of 

“events” (i.e., measurements readings) that belong to it. 

We thus obtain a “histogram” – a most common and useful kind of diagram. In the illustration (see side, 

above), the histogram above shows better (more precise) measures than the one below (the measurement 

                                                           
5
 There is another quantity, the “sample variance”, which is very similar to this, but not just the same. We will not use it. 
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error in both histograms has been made very large, to make it evident). In those histograms we can observe 

that counts become larger and larger as we approach the mean value – on the contrary, if scales are good, 

as we move away from the mean they rapidly become fewer and fewer. If scales are not good, the 

measures are much sparser – however, the sum of counted events is a constant, because it is simply the 

total number of readings. Hence, the wider the distribution is, the squatter it becomes. 

The most interesting observation is that the distribution has always (approximately) the same shape, 

corresponding to a special curve, called a “Gaussian” (see picture to the side). When we meddle with 

random phenomena, we find this curve so often, that it is called “normal distribution”
6
. This however does 

not mean that all phenomena are Gaussian, and we need always be very cautious in using properties valid 

only for Gaussian phenomena in unknown situations – that is, situations that may well obey to completely 

different laws! 

Gaussian distributions have a very useful property: if m is their data mean and σ is their standard deviation, 

approximately
7
 a 63% of the readings belong to the interval m±σ (that is, it is contained between m-σ and 

m+σ). We call such a range a confidence interval – this is a very important practical parameter to evaluate 

the quality of the measure. Moreover, approximately 99% of the readings belong to the interval m±3σ (i.e., 

from m-3σ to m+3σ) – in practice, all data fall in this range. 

All this should be interpreted in a statistical way and not as a certainty – sometimes we may find many 

readings outside the interval m±3σ , while some other times we may find none… statistically, however, that 

is on average, we expect to find more or less 99% of the readings inside this interval, and more or less 1% 

outside. The picture below shows the confidence intervals ±σ in two Gaussian distributions, both having 

mean value of 5 and standard deviation respectively of 1 (left) and 2 (right). 

 

In conclusion, we can use standard deviation as a reliable indicator of the quality of the measure, the latter 

being the more precise, the smaller the deviation is; and define confidence intervals for which we know the 

probability, i.e. the average percentage of measures belonging to the interval. 

 

Now, the quantity we want to measure is the players’ playing strength, and the variable that interests us 

most is therefore each player’s position in the final standings. However, for a more complete comparison 

                                                           
6
 In fact, Bernoulli’s “Central Limit” theorem, a very important theorem related to the Law of Large Numbers, shows that every time 

a large number of stochastic events is involved, the larger that number is, the more the distribution resembles a Gaussian. 
7
 Percentages are specific to each probability distribution. Those given here are only valid for Gaussian phenomena. 
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between Dubov and FIDE Swiss systems, we should first examine some other aspects of the pairings, and in 

particular players’ ARO distribution, which is the optimisation goal of the Dubov system.  

All parameters have been evaluated after the last round – that is, at the end of the tournament. 
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POPULATION OF SCOREGROUPS 

Scoregroups composition 

In an ideal tournament (without draws), all the possible scoregroups are created, but their populations are 

very different, with many players in central scoregroups, and fewer and fewer as we move away from the 

average score. Draws reduce the number of players having either maximum or minimum score, because 

they decrease stronger players’ scores and increase weaker players’, thus inflating central scoregroups. This 

detracts from the population of extreme scoregroups, sometimes even completely emptying them, and 

therefore making them disappear. Because of this, we first examined the distribution of scoregroups, which 

shows the effectiveness of the tournament in selecting best (and worst) players. The histograms below 

show the frequency of the scoregroups – that is, how many times the scoregroup was created in the 5000 

tournaments of each sample set (i.e., there were players in the tournament who ended up with that score). 

   

Figure 1: Probability of scoregroups formation (left: Group A; middle: Group B; right: Group C) 

The central scoregroups were of course created in all tournaments. The probability of scoregroup 

formation decreases as we move away from the average score, and ‘extreme’ (outmost) scoregroups are 

definitely rare (see table and graphs below). 

Group A Group B Group C score 
group 

Dubov FIDE 
Swiss 

Dubov FIDE 
Swiss 

Dubov FIDE 
Swiss 

9 0,5% 0,2% 3,6% 3,4% 0,1% 0,1% 

8,5 2,9% 2,8% 19,2% 17,0% 2,7% 2,2% 

8 14,5% 12,7% 48,6% 46,1% 16,2% 14,0% 

7,5 44,6% 44,3% 75,8% 76,2% 59,3% 57,5% 

7 81,1% 79,2% 98,1% 98,4% 93,7% 94,9% 

Figure 2: Probability of formation of top scoregroups 

For example, the 7.5 points scoregroup in Group A was created only in approximately 45% of the 

tournaments, while probability gets below 15% for the 8 points one. In Group B the probability of extreme 

scoregroups decrease definitely slower (there are many players with very sparse ratings). Group C, which 

contains many players but less sparse ratings, shows a ‘halfway’ behaviour, but resembles Group A in its 

rapid decrease of extreme scoregroups probability. This happens because, when ratings are less sparse 

(Groups A and C) the number of draws increases, thus deflating extreme scoregroups. 

Group B 

Group C 

Group A
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The FIDE Swiss system always shows a slightly lower probability of extreme scoregroups creation than 

Dubov. FIDE Swiss therefore makes a (slightly) stricter selection of the players forming the top standings – 

however, the difference is definitely small. 

Another very important parameter for the composition of standings is the average number of players 

contained in each scoregroup, which tells us whether tiebreak criteria are needed to decide players’ 

positions in standings. We therefore examined the average distribution of the number of players per 

scoregroup, in the 5000 tournaments of each sample set. This too is very similar between the two systems 

– however, Dubov puts some more players in top and bottom scoregroups than FIDE Swiss. 

   
Figure 2: Average number of players by scoregroups. (from left to right: Group A; B; C. Please note that scales are different.) 

The difference is once again very little, as indicated by the comparison of the distributions of the total 

number of players per scoregroup (as before, on 5000 tournaments). 

   

Figure 3: Total players vs. scoregroups. (from left to right: Group A; B; C. Please note that scales are different.) 

To summarize, the formation of scoregroups shows only marginal differences between the two systems, 

with only a slight tendency of FIDE Swiss to select top and bottom standings stricter than Dubov does. 

ARO Comparison 

The Dubov system, in its rules preface, establishes as its goal the fair treatment of players, meaning that 

the path to victory should be equally difficult for all players who finish the tournament with the same score. 

The difficulty of this path is evaluated based on the supposed playing strength of the opponents, which is 

estimated by ratings. The reference value for each player is therefore the ARO (Average Rating of 

Opponents), which is the mean of ratings of all the actually encountered opponents –unplayed games are 

excluded from the computation. The strategic goal of the system is therefore to equalise the ARO for all 

players belonging to any given scoregroup.  

To evaluate whether this goal is achieved, we compared the distribution of AROs and of respective 

variations in scoregroups. The first scrutinized parameter is the mean of AROs on 5000 tournaments, versus 

scoregroup (see graphs below). 
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Figure 4: ARO vs scoregroup (from left to right: Group A; B; C.). 

The evolution of ARO can be subdivided in three zones:  

- a top standings zone, where the curve is almost constant versus scoregroups – players in those 

scoregroups encountered an approximately equal opposition 

- a wide central zone, where the encountered opposition is essentially proportional to the final 

result. Players in those scoregroups encountered an opposition that was as tough, as good their 

final result was 

- a bottom standings zone, where the encountered opposition is once again approximately the same 

for all players 

We should observe that in central scoregroups the average encountered opposition per player is essentially 

the same between the two systems – hence, to a majority of players, the two systems seem fairly 

equivalent, as in practice there are (small) differences only in top and bottom standings. To give a sharper 

vision of this behaviour, we depicted the differences between AROs mean values in FIDE Swiss and Dubov 

systems (graphs below). 

 
Figure 5: Difference between average AROs obtained by FIDE Swiss (Dutch) and Dubov systems. (from left to right: Group A; B; C.) 

In top scoregroups, the average encountered opposition is smaller for the Dubov system (≈15 Elo points in 

Group A, ≈50 points in B, ≈30 points in C). In bottom scoregroups we find just the opposite, and the average 

encountered opposition is (slightly) higher for the Dubov system. (The difference is more evident in Group 

B, because of the very wide rating range.) 

This pretty much means that the path to victory is just a little easier with Dubov than with FIDE Swiss. This 

is consistent with the previous observation that FIDE Swiss makes a stricter selection of the standings top 

and bottom. 

All this however still tells us nothing about the success in equalising oppositions - even if means are equal, 

AROs could still be almost equal or very different. To evaluate this aspect of the question, we computed the 

standard deviation σARO of AROs in each scoregroup (for the full sample of 5000 tournaments), and depicted 

its evolution (see graphs below). 
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Figure 6: Spread of AROs versus scoregroups (standard deviation in Elo points) for FIDE Swiss (Dutch) and Dubov systems. (from left 

to right: Group A; B; C.) 

The deviation is at its maximum for Group B, where ratings are distributed in a very wide range. In all 

samples, it is at its maximum for central scoregroups, and decreases moving to extreme scoregroups – 

where there are only few players, and of fairly similar playing strength. 

The deviation in FIDE Swiss is usually larger than in Dubov for central scoregroups – while it is comparable 

or even smaller for extreme scoregroups, and especially for top ones (see graphs below). Data show that, in 

central scoregroup, ARO variability is smaller (approximately 20-30 Elo points) for Dubov than for FIDE 

Swiss – however, this advantage becomes smaller and smaller, and even vanishing, as we move towards 

top standings positions.  

 
Figure 7: Difference in the spread of AROs between FIDE Swiss (Dutch) and Dubov systems (from left to right: Group A; B; C.). 

For example, for the “large Open” format tournaments (Group B), the average standard deviation of ARO in 

central scoregroups is about 70 Elo points for the Dubov system and about 90 points for FIDE Swiss. Hence, 

in case of Dubov tournaments, the AROs of approximately 63% of the players belong to an interval around 

±70 Elo points, while for FIDE Swiss this interval is around ±90 points. Group A shows a similar difference, 

while there is a clearly bigger advantage for the “large Master” formula (Group C) – where, by the way, 

with the Dubov system we also observe an almost uniform dispersion of AROs versus scoregroups. 

To better understand this phenomenon, we also examined the standard deviation of ARO at single 

tournament level, depicting its distribution in some representative scoregroups (see graphs below). 

 
Figure 8: Spread of AROs in tournaments; x: deviation σ (Elo points); y: frequency (number of tournaments showing deviation σ) 

For central scoregroups (5 pts.), the distributions seem to resemble Gaussians – especially for Groups A and 

C, where rating ranges (and hence ARO ranges) are definitely narrower. 
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On the contrary, in outer scoregroups, the small number of players and a limitation intrinsic to scores 

(which can neither become less than zero, nor more than 9) both concur to distort the symmetry and shape 

of the distribution. 

In summary, in top scoregroups the simulations show an equalisation of AROs that is comparable or better 

for the FIDE Swiss system – which also exhibits a slightly higher ARO. This seems to indicate that the winner 

encounters a superior and more uniform opposition with respect to that given by the Dubov system. On the 

contrary, the equalisation of ARO given by the Dubov system in central scoregroups is clearly better – but 

not excessively so. 

Rating distribution 

The rating distribution in scoregroups is also an interesting element in the comparison between the two 

systems (see graphs below). It gives a simple indication of the global effectiveness of the pairing systems in 

measuring and classifying the playing strength of contestants. 

 
 Figure 9: Average ratings in scoregroups obtained by FIDE Swiss (Dutch) and Dubov systems (from left to right: Group A; B; C.). 

Once again, the outcomes of the two systems are almost equal, and evolutions are quite similar to those of 

ARO: in central scoregroups the distribution is fairly linear, while it tends to flatten for outer scoregroups. 

This similarity is not at all unexpected, because in the course of the tournament, stronger players tend to 

gradually move towards top standings, and to play more and more with their equals, thus strengthening 

each other’s encountered opposition. Graphs below show the difference in average rating versus 

scoregroups. 

 
Figure 10: Difference between average ratings obtained by FIDE Swiss (Dutch) and Dubov systems (from left to right: Group A; B; C.). 

In the top (9 points) scoregroup – which exists only in 0.1÷0.2% of the tournaments – the average rating for 

FIDE Swiss is approximately 30 Elo points less than for Dubov. In all other scoregroups, the difference 

between the two systems is inside ±10 Elo points, and in practice can be ignored. 
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STANDINGS 

Linearity of standings 

As mentioned above, the ideal tournament should classify players based on their playing strength. Since in 

our simulations (contrary to real tournaments!) the playing strength is by definition exactly given by the 

player’s rating, an ideal tournament should yield standings that are identical to the initial ranking list. In this 

paragraph we compare the standings made by Dubov and FIDE Swiss systems to each other and to the ideal 

standings – that is, the initial ranking list. For a better understanding of these results, the comparison also 

included the standings obtained by double-round robin pairings with the same sample sets of players. In 

order to ensure the statistical equivalence of the sample sets, the results for the games were generated 

based on the expected outcome of the game, as mentioned before
8
, both for Swiss and round robin 

tournaments. 

In each sample set we examined the average position of players in the final standings as a function of the 

initial ranking (see graphs below, left), and the respective deviation (right) from the ideal evolution (the 

latter being a perfectly linear correspondence between pairing id and position in standings). 

 
Figure 11: Standings linearity (Group A). Left: correlation between initial ranking (x) and final standing (y). Right: Deviation of final 

standing from intial ranking. 

 
Figure 12: Standings linearity (Group B). Left: correlation between initial ranking (x) and final standing (y). Right: Deviation of final 

standing from intial ranking. 

 
Figure 13: Standings linearity (Group C). Left: correlation between initial ranking (x) and final standing (y). Right: Deviation of final 

standing from intial ranking. 

                                                           
8
 See “The simulations”, page 3. 
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In all sample sets we found a remarkable correspondence between initial ranking and final position. Only in 

outmost scoregroups there is a mild divergence from linearity, caused by the limiting effects of the edges
9
. 

This causes the observed partial loss of linearity, which is unavoidable. This effect is just barely visible in the 

standings obtained from round robin tournaments, (although it can still be seen), presumably because of 

the very large number of rounds. 

The deviation from ideal (see graphs above, right side) shows this distortion in more detail – it is therefore 

mainly positive for the upper part of standings, and negative for the lower part. The above systematic error, 

which is intrinsic in all systems, is more evident in Swiss systems because of the smaller number of rounds. 

Its standard deviation gives an immediate estimate of the uncertainty in the yielded standings – comparing 

the obtained values is rather interesting (see table below). 

Group A  
(Masters) 

Group B  
(Open) 

Group C  
(large Masters) 

 
FIDE 
Swiss 

DUBOV DRR 
FIDE 
Swiss 

DUBOV DRR 
FIDE 
Swiss 

DUBOV DRR 

σ
DEV

 4,6 5,0 1,7 4,9 6,0 1,1 8,3 11,3 0,9 

 

For example, with the Dubov system, player #10 in Group A obtains, an average position equal to 13.2, and 

a ≈63% probability of ending up in positions 8÷18; with the FIDE Swiss system the average positioning is 

12.2 (that is, one standing position up) and the player has a ≈63% probability of ending up in positions 

8÷17. However, in both cases, the player could well end up eight ranks – with a non-negligible probability of 

≈18%. 

In Group A (Master tournaments with comparatively few players), simulations results are similar for both 

systems. The difference is far more evident in Group B and especially in Group C. 

The FIDE Swiss system shows a very peculiar ‘swing’ exactly at the centre of the standings. This is especially 

evident in Group C, between players #71 and #72. Those are respectively the last of the first half and the 

first of the second half of the initial ranking. On average, those two players are six positions apart from 

each other in final standings, while all other consecutive players are, on average, no more than two 

positions apart. Hence, deviation ‘jumps’ (this is also visible in scores – hence, it is not an artifact of 

tiebreaks). This behaviour, even if not always evident, is intrinsic to the FIDE Swiss system
10

, and cannot be 

eliminated; however, as hinted above, standings deviation from ideal is globally smaller for FIDE Swiss than 

for Dubov. 

The lack of linearity in the formation of standings poses of course the question if final positions are 

consistent with playing strengths; we can answer this question by means of the correlation index
11

. 

                                                           
9
 For example, the position of player #50 can be in a wide range of standings centred on the 50th and, in the average positioning, 

we obtain a position approximately nearing the initial ranking. Conversely, for a top (or bottom) player, the interval is necessarily 

unbalanced towards lower (or, respectively, higher) positions. 
10

 The reason for this behaviour is that, in the pairing process, the centre of the bracket is a discontinuity point. Here we find an 

abrupt transition from the lowest players of the upper subgroup (who are paired to weaker opponents), to the upper players of 

the lower subgroup (who are paired with stronger opponents). 
11

 The correlation index ρ (this is the lowercase Greek letter ‘ro’) between two or sometimes more variables is a quantity that varies 

in the interval ±1, where +1 and -1 mean a perfect linear dependency, while a null value means total uncorrelation. The latter 

often means that the interested variables are reciprocally independent – although there are examples of uncorrelated variables 

that are dependent (e.g. y=x
2
). As a rule of thumb, the correlation is loose for |ρ| < 0.3, average for |ρ| < 0.7 and good for 

|ρ| ≥ 0.7 
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We therefore computed the correlation index between position in standings and initial ranking (i.e., ideal 

position) for all sample sets (see table below).  

Correlation  

index 

Group A  

(Masters) 

Group B  

(Open) 

Group C  

(large Masters) 

Dubov 96.59% 99.34% 99.54% 

FIDE Swiss 96.16% 99.45% 99.70% 

Double RR 99.34% 99.93% 99.97% 

 

All the results show an almost perfect correlation, thus indicating a very strict functional dependence 

between ideal and achieved positions. The correlation index is essentially equal to unity both for Dubov and 

FIDE Swiss systems, thus indicating that the standings obtained in both systems represent playing strengths 

very well and with similar reliability. 

To scrutinize the matter in even some more depth, let’s once again examine in detail the deviation of 

standings from ideal (see Figures 11, 12, 13) – here, we define deviation as the difference between 

achieved and ideal (initial ranking) positions. The analysis of such deviations shows that, with respect to the 

Dubov system, FIDE Swiss always yields standings that are slightly nearer to ideal – however, as expected, 

round robin gives the best (by far!) result. Since maximum (and most unwelcome) deviations show up in 

top scoregroups, let’s focus briefly on top standings (see graphs below). 

 
Figure 14: Detail of standings linearity in top scoregroups (from left to right: Group A; B; C.). 

As before, we can see that the FIDE Swiss system Swiss yields standings that are slightly nearer to ideal than 

Dubov does; in Group B, which is distinguished by a far wider variability of ratings, both the Swiss systems 

show a clear tendency to assign the very first standings positions with better precision – in other words, the 

presence of weak players helps the correct finding of the stronger. (After all, this behaviour should not be 

unexpected.) In top standings of Group A, where the players are not many and the ratings are distributed in 

a narrower range, the correlation decreases noticeably. Even for round robin, it goes down to around 90%, 

which is still a very good value, but definitely much worse than the global results, which are over 99%.  

Finally, we verified the correlation of the standings obtained from each system among themselves (see 

table below). The very high values show a strong reciprocal dependence of the results, and thus a 

significant agreement among standings. 

Correlation  

index 

Group A  

(Masters) 

Group B  

(Open) 

Group C  

(large Masters) 

FIDE vs. DRR 99.16% 99.81% 99.85% 

Dubov vs. DRR 99.29% 99.75% 99.81% 

FIDE vs. Dubov 99.90% 99.94% 99.66% 
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We conclude the analysis of standings positions with a look to the standard deviation, which characterises 

the uncertainty of the position and therefore its typical error. 

 

Figure 15: Average standings standard deviation (from left to right: Group A; B; C.). 

Once again, we find that FIDE Swiss is more precise than Dubov in assigning the standings positions. We can 

also notice that even double-round robin shows a far for negligible standard deviation, which seems to 

decrease, but does not vanish, for top standings. 

Podium selection 

To examine how players are chosen for the podium, we studied the first ten players’ standings. In order to 

be able to compare the scores yielded by round robin tournaments with those of Swiss tournaments, we 

normalised them to a maximum of 9 points. 

Group B FIDE Swiss DUBOV Double RR 

# Elo 
Avg 

Rank 
Avg 

score 
σRank 

estimated 
expected 
standing 

Avg 
Rank 

Avg 
score 

σRank 
estimated 
expected 
standing 

Avg 
Rank 

Norm 
Score 

σRank 
estimated 
expected 
standing 

1 2599 2,64 7,46 2,89 1÷6 2,56 7,54 2,79 1÷5 1,23 8,58 0,49 1÷2 

2 2572 3,19 7,32 3,17 1÷6 3,39 7,33 3,45 1÷7 1,82 8,51 0,51 1÷2 

3 2510 4,97 7,00 4,85 1÷10 5,15 6,98 4,97 1÷10 3,01 8,30 0,35 3÷3 

4 2446 7,65 6,68 7,17 1÷15 8,16 6,65 7,59 1÷16 4,52 8,04 0,88 4÷5 

5 2443 7,73 6,68 6,64 1÷14 8,01 6,68 7,18 1÷15 4,68 8,03 0,80 4÷5 

6 2405 9,86 6,52 8,53 1÷18 10,34 6,50 8,95 1÷19 5,96 7,84 0,72 5÷7 

7 2374 11,68 6,41 9,75 2÷21 12,32 6,38 10,44 2÷23 6,99 7,68 0,68 6÷8 

8 2339 14,35 6,26 11,93 2÷26 14,90 6,24 12,19 3÷27 8,32 7,48 1,19 7÷10 

9 2303 16,99 6,14 13,88 3÷31 18,08 6,10 14,89 3÷33 10,97 7,25 3,09 8÷14 

10 2298 17,23 6,13 13,56 4÷31 18,38 6,08 14,46 4÷33 11,51 7,22 2,88 9÷14 

The above table shows the situation for Group B, which gave the best results among our simulations. The 

expected standings from Swiss systems vary in a very wide interval (computed as a ±σ confidence interval) 

– although it is slightly narrower for FIDE Swiss than for Dubov.  

Of course, the double-round robin system yields a much smaller uncertainty – likely because of the huge 

number of rounds.  

The worst situation is that found in Group C (see table below), showing a very wide confidence interval, in 

which the first players of the initial ranking can achieve definitely unsatisfactory final standings. 
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Group C FIDE Swiss DUBOV Double RR 

# Elo 
Avg 

Rank 
Avg 

score 
σRank 

estimated 
expected 
standing 

Avg 
Rank 

Avg 
score 

σRank 
estimated 
expected 
standing 

Avg 
Rank 

Norm 
Score 

σRank 
estimated 
expected 
standing 

1 2615 12,54 6,33 17,56 1÷30 12,97 6,35 18,67 1÷32 1,83 6,94 1,44 1÷3 

2 2605 13,78 6,27 18,53 1÷32 14,41 6,26 19,56 1÷34 2,66 6,84 1,68 1÷4 

3 2600 14,51 6,24 18,68 1÷33 15,06 6,23 19,75 1÷35 3,21 6,79 1,72 1÷5 

4 2590 15,52 6,19 19,42 1÷35 16,32 6,16 20,20 1÷37 4,39 6,68 2,05 2÷6 

5 2580 17,10 6,13 20,76 1÷38 18,73 6,06 22,72 1÷41 5,73 6,58 2,40 3÷8 

6 2572 18,59 6,05 21,69 1÷40 20,24 6,00 23,63 1÷44 6,87 6,50 2,63 4÷10 

7 2570 18,94 6,05 21,52 1÷40 20,22 5,99 22,98 1÷43 7,22 6,48 2,48 5÷10 

8 2568 19,44 6,03 21,56 1÷41 20,17 5,99 22,26 1÷42 7,57 6,46 2,51 5÷10 

9 2559 20,90 5,97 22,51 1÷43 22,12 5,93 24,27 1÷46 9,01 6,36 2,69 6÷12 

10 2553 21,69 5,94 22,79 1÷44 24,12 5,85 25,57 1÷50 9,96 6,31 2,79 7÷13 

 

To complete the comparison of the two systems, 

we want to estimate their ability to identify with 

certainty the assignees of the first three positions 

in standings (podium) – and in particular the 

tournament winner. Simulation data show the 

percentage of tournaments in which the 

standings could be drawn up without help from 

tiebreaks (see table and picture to the right). The 

first white column represents the percentage of 

tournaments in which the topmost scoregroup 

contained only one player, while the subsequent 

scoregroup contained several players – and thus 

the winner was univocally identified, but the 

runners-up were not. The second column 

represents the percentage of tournaments in 

which we could determine with certainty the first 

and second place; while the third column refers 

to tournaments in which all podium players were 

identified. The fourth column represents the 

percentage of tournaments in which tiebreaks were necessary event to determine the winner. 

It is readily evident that the choice of tiebreakers is always very important, because it determines the 

podium composition, completely or in part, in almost all tournaments (in our simulations, more than 95%). 

The percentages, however widely different from samples set to samples set, are always fairly similar 

between Dubov and FIDE Swiss. 

 

 

Group Sample 
1st place 

only 
1st & 2nd 

place 
full 

podium 
None 

D-68 37,4% 22,7% 4,7% 35,2% 
A 

F-68 37,1% 21,8% 4,0% 37,0% 

D-140 28,2% 36,3% 3,7% 31,9% 
B 

F-140 28,8% 33,5% 4,0% 33,6% 

D-142 39,7% 20,9% 1,9% 37,5% 
C 

F-142 39,9% 18,9% 1,6% 39,6% 



18 

CONCLUSIONS 

The composition of scoregroups, and the corresponding players’ distribution, produced by Dubov and FIDE 

Swiss systems are essentially similar, with only a slight tendency of the latter to better select the outmost 

(top and bottom) scoregroups. 

The evolution of ARO versus scoregroups is also comparable between the two systems, with a just mild 

tendency of FIDE Swiss to create a slightly more difficult path for winners. 

The Dubov system shows a better – but still not perfect – equalisation of AROs in central (i.e., middle 

standings) scoregroups. However, this behaviour seems to vanish in top scoregroups, where FIDE Swiss 

gives comparable results – or even better, as is the case for Group B. This seems to show that tournament 

winners encounter a superior and more uniform opposition with FIDE Swiss than with Dubov. 

The linearity of standings seems to be fairly similar between the two systems – however, standings yielded 

by FIDE Swiss show slightly smaller deviation from ideal and slightly less uncertainty.  

The two systems yield similar results also in the composition of the podium – sometimes one system is 

marginally better, sometimes the other. 

In conclusion, the goal of ARO equalisation is at least partly achieved. However, this seems not to imply a 

better reliability of the yielded standings, which on the contrary seem to be slightly better for FIDE Swiss. 

This seems to call into question the basic assumption of the Dubov system – that equalising ARO can ensure 

a fairer pathway or result in the tournament. 

 


